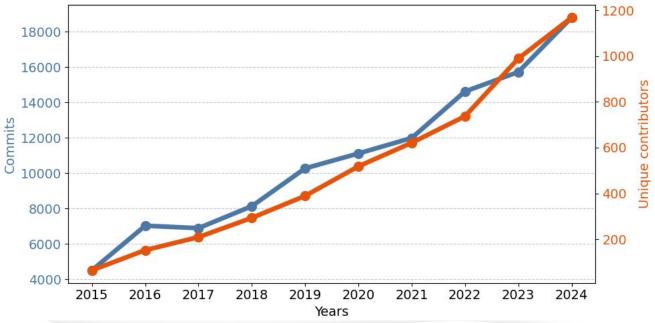


Intro

- About BayLibre
 - Open Source consultancy company specializing in all things embedded: Linux Kernel,
 Yocto, U-Boot, Zephyr, hardware design, compilers and toolchains (GNU)
 - Check the <u>blog</u> page for an up to date list of all our contributors
 - Based in Nice, France, but we have a global presence (US, Canada, UK, Germany, Italy, Taiwan, and more)
- About me
 - Mbed TLS and Zephyr contributor since 2022
 - Part of Zephyr's
 - Security Working Group
 - Security Committee
 - Technical Steering Committee


RTOS options on the market

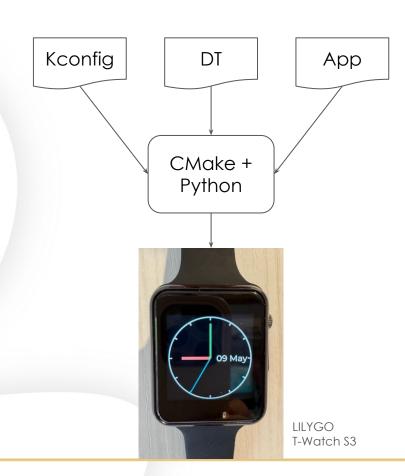
- Several open source RTOS-es available on the market that support a good amount of platforms
 - FreeRTOS (Amazon AWS; MIT license)
 - ThreadX (Eclipse Foundation; MIT license)
 - ChibiOS (Giovanni Di Sirio; GPL3/proprietary license)
 - NuttX (Apache Software Foundation; Apache 2.0 license)
- Zephyr RTOS
 - Owned by Linux Foundation
 - o Apache 2.0 license

Zephyr growth in the last decade

"In 2024, Zephyr had 1,100 unique contributors with more than 50% being first-time contributors" [1]

Current support

- Support covers basically almost all possible 32/64 bit platforms
 - Cortex-M/A, Xtensa, RISC-V just to name a few popular ones
- Many <u>supported boards</u>
 - Currently 743 continuously increasing
- There are several products already on the market running Zephyr
 - https://www.zephyrproject.org/products-running-zephyr/


Reasons for Zephyr's success

- Full featured kernel
- <u>High number</u> of optional subsystems and modules
 - Networking stack (Bluetooth, Wi-Fi, ...)
 - USB
 - Power Management
 - IPC for AMP both as Zephyr<->Zephyr and Zephyr<->Linux(rpmsg)
 - Non-volatile storage (Classic filesystems like EXT2 or Zephyr's specific ones)
 - Graphics (LVGL)
 - Logging
 - Shell
 - \circ \rightarrow Crypto \leftarrow
 - o ... and many others...

Development flow

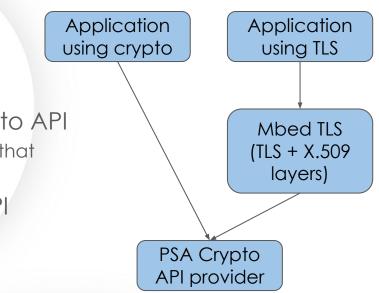
- Configuration
 - Kconfig based configuration files to enable drivers, modules and subsystems and to control their features
 - Device-tree to describe the hardware
 - ≈ embedded Linux
- Build system
 - CMake based
 - Python for checks and code generation
- Developers only need to focus on the application

Security in IoT devices (1/3)

- Zephyr is a great platform for Internet-of-Things (IoT) devices
 - Security is essential
- Bluetooth, Bluetooth Low-Energy (BTLE) and Wi-Fi's supplicant require crypto to provide network functionality
- New protocols being introduced for IOT
 - Thread (supported with OpenThread)
 - Matter

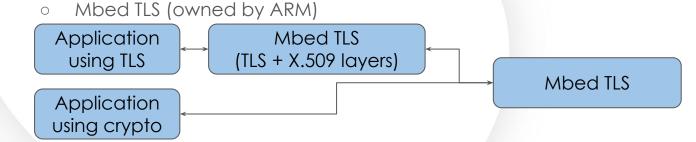
Security in IOT devices (2/3)

- TLS sockets
 - IOT device needs to connect to or implement a server
 - o It must handle all TLS details: certificates, key exchange, [en | de]cryption, ...
- JWT (JSON Web Token)
 - Data exchange with servers
- Random value generation
 - HW IPs usually only provide entropy data
 - This can be used as seed to generate random values
 - Provide cryptographically secure random generators
 - Important for a non-predictable behavior


Security in IOT devices (3/3)

- Secure bootloader
 - MCUboot
 - Verifies signature of following images before loading them
 - OTA update
- Secure Storage
 - Allows secure storing of sensitive data (keys, certificates, ...)
- Flash management
 - Compute hash of flash memory for integrity check

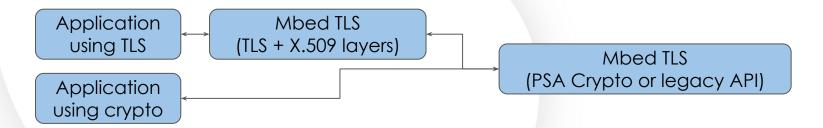
Standard crypto interface


- Need for a crypto provider
 - Directly from the application
 - Indirectly through TLS/DTLS
- Zephyr is transitioning toward PSA Crypto API
 - There's some residual legacy API usage, but that should be removed soon
- PSA (Platform Security Architecture) API
 - Standard interface designed by ARM
 - Provides API also for:
 - Secure Storage
 - Attestation
 - Firmware update



PSA Crypto provider

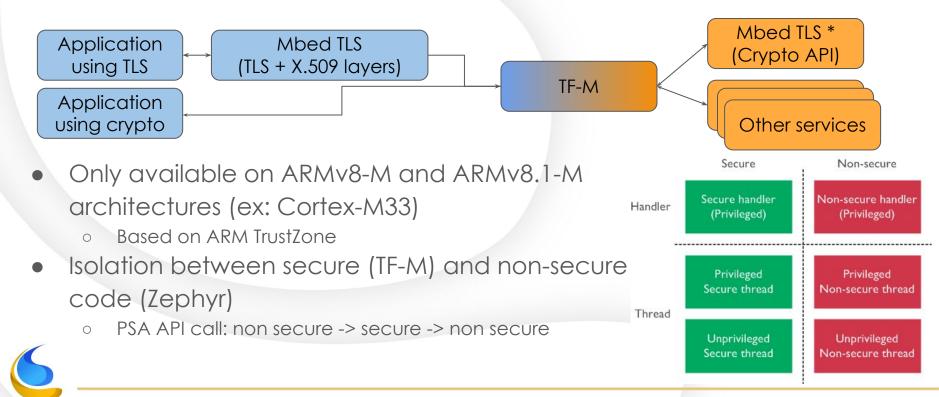
1 or 2 options depending on the hardware support



TrustedFirware-M (owned by ARM)

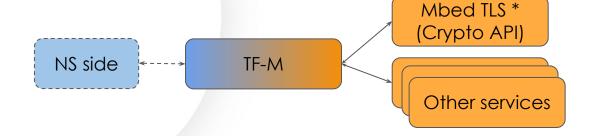
Mbed TLS (1/2)

- Provides the full TLS stack
 - TLS + X.509 + Crypto
- Crypto is provided through PSA API or legacy interface
 - Legacy is soon to be removed from the public interface (only internally used)



Mbed TLS (2/2)

- Software based solution
 - o Pro
 - Available for all platforms
 - Cons:
 - It supports few optimizations for some CPU and some alg (ex: AES using ARMv8 Cryptographic Extension), but not in general
 - No support for hardware accelerators out of the box
- Credentials
 - On RAM during execution but memory can be dumped
 - Not securely stored at rest
 - App developer need to take care of this
 - Secure Storage might be a solution



TrustedFirmware-M (1/2)

TrustedFirmware-M (2/2)

- TF-M implements all the PSA API services
 - Crypto
 - Secure storage
 - Attestation
 - Firmware update
 - Status

- Relies on Mbed TLS to implement and provide PSA Crypto API service
 - Custom patches to allow hardware accelerators to be used (ex: ARM CryptoCell-312)

Future work

- Zephyr
 - Complete the transition to PSA Crypto API in Zephyr and remove all legacy crypto
 - Continue with refactoring/improving integration of Mbed TLS
- Mbed TLS
 - Continue the work for the next release planned September 2025
 - Repo split (TLS/X.509 <-> Crypto)
 - Removal of legacy crypto API
 - After that, add support for hardware accelerators
 - Vendors can easily support their own accelerators
 - Useful for both full Mbed TLS and TF-M scenarios

Thanks for your attention

Questions?

