
For Linux kernel development

Perfetto recipes

Deck design notes:
Pre-built color combinations of this
title slide are available for you to
choose from.
Want to change the colors?

● Go to View > Theme Builder
● Make a copy of Cover Slide
● Adjust colors

Proprietary and Confidential

Zimuzo Ezeozue
Software Engineer, Google

- Android OS engineer at Google for 8 years
- Currently building tools to help other engineers
 diagnose performance issues from the field.
- Perfetto power user and contributor

Deck design notes:
Want to choose a new headshot?

● Right click on image >
Replace image

Proprietary and Confidential

Table of
contents

Introduction01
Cyclic test demo

02
Instrumenting userspace demo

03

Questions?04

Proprietary and Confidential

Introduction

Proprietary and Confidential
Perfetto Deck design notes:

Want to choose a new image?
● Right click on image >

replace image
● Choose from our image

gallery in the Assets section
of this deck or source own

Who is this talk for?
Everyone! Really, hopefully everyone learns
something about something.

Getting perfetto setup, running a basic
config to capture sched and IRQs,

#

Proprietary and Confidential

What is Perfetto?
Perfetto Deck design notes:

Want to choose a new image?
● Right click on image >

replace image
● Choose from our image

gallery in the Assets section
of this deck or source own

perfetto.dev
Perfetto excels at capturing and visualizing
time series data, making it easy to search,
aggregate, and derive insights from the
information.

#

Proprietary and Confidential

Web UI
Perfetto Deck design notes:

Want to choose a new image?
● Right click on image >

replace image
● Choose from our image

gallery in the Assets section
of this deck or source own

ui.perfetto.dev
Organizes and visualizes time series events
across subsystems like CPU, IRQ, Memory
and all running processes.

Very easy to zoom in to any region of the
timeline

#

Proprietary and Confidential

SQL backend
Perfetto Deck design notes:

Want to choose a new image?
● Right click on image >

replace image
● Choose from our image

gallery in the Assets section
of this deck or source own

SQL tables
Powers the UI frontend and is directly
queryable. In addition to standard SQL
functions, it comes with custom
functions for interval and graph
operations. New functions can also be
implemented in C++..

#

Proprietary and Confidential

Data formats
Perfetto Deck design notes:

Want to choose a new image?
● Right click on image >

replace image
● Choose from our image

gallery in the Assets section
of this deck or source own

Supported formats
Two ways to use Perfetto:
1) Record events on device and capture Perfettos rich
data format
2) Import data from some other supported format.

These files can all be opened in the UI and there’s good
support for adding new data formats.

● Perfetto native data format
● Android systrace
● Ftrace text output
● JSON
● perf

#

Proprietary and Confidential

Linux binaries
Perfetto Deck design notes:

Want to choose a new image?
● Right click on image >

replace image
● Choose from our image

gallery in the Assets section
of this deck or source own

● Collection of processes running on the
device that can read events from tracefs,
procfs, sysfs and many other sources.

● Writes the data into the standardized
Perfetto native data format.

● Wrapped behind one binary called
tracebox

● All the data sources enabled can be
configured ahead of time in a simple text
file

Configs formats

The binaries take care of configuring the
data sources: size of buffers to write into,
frequency to poll, buffer overrun policy
and many more knobs.

#

Proprietary and Confidential

Now you are an expert
Perfetto Deck design notes:

Want to choose a new image?
● Right click on image >

replace image
● Choose from our image

gallery in the Assets section
of this deck or source own

perfetto.dev/docs
You are now ready for the full detail

#

Proprietary and Confidential

Getting started

Download a release

Grab the latest release for your arch
from Github:

https://github.com/google/perfetto/releases

Unofficial instructions

Follow John Stultz’ gist for some more
detail:

https://gist.github.com/johnstultz-work/0
ec4974e0929c4707bfd89c876ae4735

Official build instructions

Follow the build instructions from the
official perfetto docs:

https://perfetto.dev/docs/contributing/build-instr
uctions

Deck design notes:
Want to choose a new image?

● Left click on image
placeholder > Upload image

Want to change icon?
● Choose from our icon

library in the Assets section
of this deck

https://github.com/google/perfetto/releases
https://gist.github.com/johnstultz-work/0ec4974e0929c4707bfd89c876ae4735
https://gist.github.com/johnstultz-work/0ec4974e0929c4707bfd89c876ae4735
https://perfetto.dev/docs/contributing/build-instructions
https://perfetto.dev/docs/contributing/build-instructions
#

Proprietary and Confidential

Buffers

buffers {

 size_kb: 1048576

 fill_policy: RING_BUFFER

}

Hello world Data sources (producers)

data_sources {

 config {

 name: "linux.ftrace"

 target_buffer: 0

 ftrace_config {

 ftrace_events: "sched/sched_switch"

 ftrace_events: "sched/sched_waking"

 }

 }

}

Simple config
./tracebox --txt -c <config>
-o <output file>

Hello world output

Simple trace output
Let’s inspect it. (trace)

https://ui.perfetto.dev/#!/?s=d7328d7f6d087fe8838def3bffc722a975d597b1

Frequency scaling
Can see the cpufreq taper off as work
frequencies slow. (trace)

https://ui.perfetto.dev/#!/?s=d451f58815578682d704b009e3fc713ab8d59400

Proprietary and Confidential

Function Graph!
Function graph tracing can be enabled to
gain more insight into what’s going on.
Though this has to be done carefully, as its
very easy to overflow the trace buffers
perfetto collects. (trace)

Deck design notes:
Want to choose a new image?

● Right click on image >
replace image

● Choose from our image
gallery in the Assets section
of this deck or source own

https://ui.perfetto.dev/#!/?s=c7ac4b85e7d90ed3e8174330ad99ab27403f68e1
#

Proprietary and Confidential

Demo:
Cyclictest

Proprietary and Confidential

Cyclictest
Cyclictest runs RT tasks call nanosleep and
measures wakeup latencies, a metric of
combined interrupt latency and scheduling
latency. Very useful for understanding
hardware/OS RT behavior

Deck design notes:
Want to choose a new image?

● Right click on image >
replace image

● Choose from our image
gallery in the Assets section
of this deck or source own

#

Proprietary and Confidential

Cyclictest + Load
More useful to provide background load to
exercise kernel and hardware paths. We
use this script* to run network and disk
load behind cyclictest to find situations
that aren’t best-case scenarios.

Deck design notes:
Want to choose a new image?

● Right click on image >
replace image

● Choose from our image
gallery in the Assets section
of this deck or source own

*https://github.com/johnstultz-work/cyclictest-latency

https://github.com/johnstultz-work/cyclictest-latency
#
https://github.com/johnstultz-work/cyclictest-latency

Proprietary and Confidential

But where?
Now we just need to find the > 1ms long
run in 15 seconds of trace over 8 cpus.
(trace)

Deck design notes:
Want to choose a new image?

● Right click on image >
replace image

● Choose from our image
gallery in the Assets section
of this deck or source own

https://ui.perfetto.dev/#!/?s=61bb2e239e2c06b10b5e50f34c9f08de34b5dfef
#

Proprietary and Confidential

Further filtering…
Unfortunately, Cyclictest has one
housekeeping SCHED_NORMAL thread
that we expect to be delayed, so filter out
that one thread by tid.

And we are left with just one instance.

Deck design notes:
Want to choose a new image?

● Right click on image >
replace image

● Choose from our image
gallery in the Assets section
of this deck or source own

#

Enable debug track
The debug track lets you add visualizations
of different sorts from your SQL queries.

There’s our needle!
Debug tracks are really useful to be able to
query for specific cases you’re looking for
and to be able to find exactly where they
occur in the visualization.

Proprietary and Confidential

Zooming in
We can see the RT99 prio cyclictest has
been runnable but not scheduled for over
1ms

Deck design notes:
Want to choose a new image?

● Right click on image >
replace image

● Choose from our image
gallery in the Assets section
of this deck or source own

#

Proprietary and Confidential

Strange!
Iperf is a SCHED_NORMAL (prio 120)
process, so it should be immediately
preempted when a RT99 task is woken! It
should not block a RT99 task!

Deck design notes:
Want to choose a new image?

● Right click on image >
replace image

● Choose from our image
gallery in the Assets section
of this deck or source own

#

Proprietary and Confidential

Check softirq track
Looking at the softirq track, we find our
culprit.

A network softirq is running for a
particularly long time, preventing userland
tasks from being scheduled

Deck design notes:
Want to choose a new image?

● Right click on image >
replace image

● Choose from our image
gallery in the Assets section
of this deck or source own

#

Proprietary and Confidential

Demo:
Instrumenting
userspace

Proprietary and Confidential

uint64_t run_read_test(const char *filename, size_t block_size, int num_blocks,

 int use_readahead, const char *test_name) {

 trace_begin(test_name, (size_t)block_size * num_blocks);

 int fd = open(filename, O_RDONLY);

 if (!use_readahead)

 posix_fadvise(fd, 0, 0, POSIX_FADV_RANDOM);

 read(num_blocks, block_size);

 trace_end();

 return throughput;

}
Simple benchmark

Contrived example but is simple enough to
illustrate the power of perfetto. What are
these trace_begn() and trace_end()?

Deck design notes:
Want to choose a new image?

● Right click on image >
replace image

● Choose from our image
gallery in the Assets section
of this deck or source own

#

Proprietary and Confidential

Instrumenting userspace
Perfetto natively understands these Begin and
End markers in the trace buffer.

The perfetto sdk is a more robust for serious
instrumenting but requires more than one slide

Deck design notes:
Want to choose a new image?

● Right click on image >
replace image

● Choose from our image
gallery in the Assets section
of this deck or source own

void trace_begin(const char* name, size_t size) {

 if (trace_marker_fd >= 0) {

 char buffer[256];

 sprintf(buffer, "B|%d|%s|size=%zu", getpid(), name, size);

 write(trace_marker_fd, buffer, strlen(buffer));

 }

}

void trace_end() {

 if (trace_marker_fd >= 0) {

 char buffer[63];

 sprintf(buffer, "E|%d", getpid());

 write(trace_marker_fd, buffer, strlen(buffer));

 }

}

#

Proprietary and Confidential

IO benchmark
Contrived workload to illustrate the power
of instrumenting userspace and visualizing
userspace and kernel events on the same
timeline

Deck design notes:
Want to choose a new image?

● Right click on image >
replace image

● Choose from our image
gallery in the Assets section
of this deck or source own

#

IO throughput
Can see the bimodal behavior along
the same timeline as IRQS and other
system events. (trace)

https://ui.perfetto.dev/#!/?s=5d45da63a75108be73752e2af4ebb06f5e5b1a72

UI Drill down
Easy to find similar slices in the UI

Comparison
Can clearly see the readahead is
consistently faster

Time spent Running
Advanced query to showcase the
power of the SQL engine

Proprietary and Confidential

Thank you

Proprietary and Confidential

Questions?

Appendix

Links

Traces

● Hello world trace:
https://ui.perfetto.dev/#!/?s=d7328d7f6d087fe8838def3bffc722a975d597b1

● Freq scaling trace:
https://ui.perfetto.dev/#!/?s=d451f58815578682d704b009e3fc713ab8d59400

● Function graph trace:
https://ui.perfetto.dev/#!/?s=c7ac4b85e7d90ed3e8174330ad99ab27403f68e1

● Cyclic test trace:
https://ui.perfetto.dev/#!/?s=61bb2e239e2c06b10b5e50f34c9f08de34b5dfef

● Userspace trace:
https://ui.perfetto.dev/#!/?s=5d45da63a75108be73752e2af4ebb06f5e5b1a72

Scripts

● Cyclic test script: https://github.com/johnstultz-work/cyclictest-latency

● Readahead script:
https://github.com/zezeozue/readahead-demo/blob/main/readahead.c

https://ui.perfetto.dev/#!/?s=d7328d7f6d087fe8838def3bffc722a975d597b1
https://ui.perfetto.dev/#!/?s=d451f58815578682d704b009e3fc713ab8d59400
https://ui.perfetto.dev/#!/?s=c7ac4b85e7d90ed3e8174330ad99ab27403f68e1
https://ui.perfetto.dev/#!/?s=61bb2e239e2c06b10b5e50f34c9f08de34b5dfef
https://ui.perfetto.dev/#!/?s=5d45da63a75108be73752e2af4ebb06f5e5b1a72
https://github.com/johnstultz-work/cyclictest-latency
https://github.com/zezeozue/readahead-demo/blob/main/readahead.c

