
Functional Safety and
Linux

Maxime Ripard

Senior Principal Software Engineer

1

The Automotive Software
Revolution

2

▸ No ABS, no Electronic Stability Program

(ESP), no active suspension

▸ Thermal Engine, no injection, no turbo,

60bhp on a good day.

▸ No Airbags

▸ No Advanced Driver Assistance Systems

(ADAS)

▸ No In-Vehicle Infotainment (IVI) (radio and

cassette player in option)

▸ Basically no software

The Automotive Software Revolution

3
Source:
caradisiac.fr

A Car in the 80s

▸ Hybrid or EV

▸ ADAS: ESP, lane keeping, adaptive cruise

control, park assist, autonomous driving, etc.

▸ Airbags, Emergency Braking, etc.

▸ Can run Doom (or navigation, whatever)

▸ Software is basically everywhere

The Automotive Software Revolution

4
Source:
cadence.com

A Car Now (Allegedly)

The Automotive Software Revolution

5

▸ Not all features are equally critical

▸ Some are life-critical (braking), some are just about comfort (radio)

▸ Industry shift from multiple processing components to a central one

･ COVID Chip Shortages

･ User now expects the system to be updated regularly

･ Margins!

▸ That component will have to handle various criticality levels

(Mixed) Criticality

ISO 26262
Functional Safety For
Road vehicles

6

ISO-26262

7

▸ Ratified in 2011, revised in 2018

▸ Apply to all road vehicles but mopeds

▸ Considered an industry standard, but not mandatory

▸ Only deals with functional safety, ie. making sure that electronics

behaves as it should

▸ Does so by introducing risk levels and associated requirements

▸ Classification based on the severity of the consequences of a defect,

the probability of it occurring, and the probability of the driver or a

passenger mitigating it.

Enter ISO 26262

ISO-26262

8

▸ Severity (S0 to S3)

･ The severity of injury a defect could cause, from no injuries (S0)

to life-threatening or fatal injuries (S3)

▸ Exposure (E0 to E4)

･ The expected frequency of an injury, from incredibly unlikely

(E0) to high (E4)

▸ Controllability (C0 to C3)

･ The likelihood of the driver preventing the injury from

controllable (C0) to difficult to control or uncontrollable (C3)

Automotive Safety Integrity Levels (ASIL) Criterias

ISO-26262

9

▸ ASIL-D: Potentially Fatal (S3), High Probability of Injury (E4),

Uncontrollable (C3)

▸ Every reduction of any criteria brings the level down by one, down to

ASIL-A

▸ Below ASIL-A is Quality Managed (QM)

▸ QM means that all risks are tolerable from a safety perspective.

Standard development practices are sufficient.

ASIL

ISO-26262

10

▸ ASIL-D: Total loss of braking

▸ ASIL-C: Cruise Control, Loss of rear braking

▸ ASIL-B: Head Lights, Brake Lights

▸ ASIL-A: Tail Lights

▸ QM: The Weather widget on the dashboard

▸ ASIL-C and -D highly recommend formal methods, and require

verification and validation.

▸ Anything below is less constrained

ASIL (cont.)

ISO-26262

11

▸ The “absence of cascading failures between components that could

lead to the violation of [some] safety requirement.”

▸ Spatial Interference: one task affects the memory of another

▸ Temporal Interference: one task affects the execution of another

▸ Resource Interference: one task affects a resource shared with

another task, or its access to it

Freedom From Interference (FFI)

12

ISO 26262
Implementation

13

ISO-26262 Implementation

14

▸ The FFI concept falls nicely into the age-old concept of CPU and

memory isolation

▸ Different takes on it:

･ Discrete Physical Devices

･ Heterogeneous Systems

･ VMs

･ Containers

･ Process sandboxing

General architectures

ISO-26262 Implementation

15

Source:
sig.centos.org/automotive

Discrete Devices

ISO-26262 Implementation

16

Source:
sig.centos.org/automotive

VMs

ISO-26262 Implementation

17

▸ Temporal Interference?

･ Scheduler, PREEMPT_RT, cgroup, etc.

▸ Spatial Interference?

･ Process Address Space, cgroup, containers, etc.

▸ Resource Interference?

･ Partitioning, QoS, Arbitration, etc.

▸ Plus usual issues for embedded devices

･ Software updates, secure boot, boot time, etc.

Doing it with Linux?

ISO-26262 Implementation

18

Source:
sig.centos.org/automotive

Doing it right

19

ISO-26262 Implementation

20

▸ The certification is made by an authority

▸ Designing a robust system is only the first step

▸ You also need to show the authority that the design is indeed robust,

doesn’t have any gap, is reviewed, tested, documented, etc.

▸ The certification attestation is then published for a given version

Getting Certified

ISO-26262 Implementation

21

▸ There’s still some parts of upstream Linux that don’t provide FFI

･ Userspace Buffer Allocations APIs

･ GPU scheduling constraints

･ Clock Framework tree rate changes

▸ Missing/incomplete features

･ OpenGL / Vulkan SC

･ Fault-Tolerant V4L2

･ Virtualized everything

･ Being able to still display something when the compositor crashed

Missing Pieces

Questions?

22

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

x.com/RedHat

23

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

