
13C - the better I2C? (Lightning version)

Wolfram Sang, Consultant / Renesas

15.05.2025, EmbeddedRecipes

Promises

From MIPI I3C white paper 1/3

 $\textbf{From MIPI I3C White paper:} \underline{\text{http://resources.mipi.org/MIPI I3C-sensor-whitepaper-from-mipi-alliance}}$

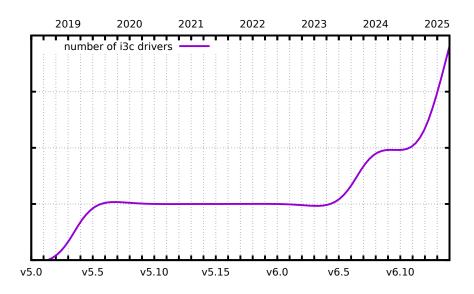
PUBLIC | 38

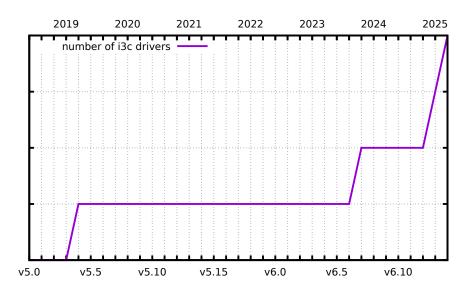
Promises

From MIPI I3C white paper 2/3

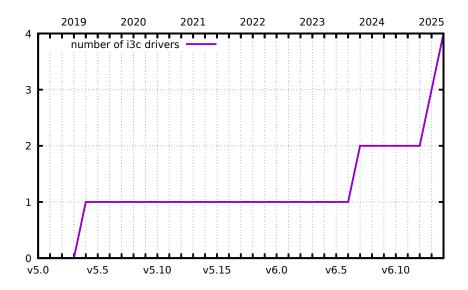
Parameter	MIPI I3C	I ² C	SPI
Advantages	Only two signal lines Legacy I ^P C devices co-exist on the same bus (with some limitations) Flexible data transmission rates Dynamic addressing and supports static addressing for legacy I ^P C devices I ^P C-like data rate messaging (SDR) Optional high data rate messaging modes (HDR) Multi-drop capability and dynamic addressing avoids collisions Multi-master capability In-band Interrupt support Hot-join support A clear master ownership and handover mechanism is defined In-band integrated commands (CCC) Support	Only two signal lines Flexible data transmission rates Each device on the bus is independently addressable Devices have a simple master/slave relationship Simple implementation Widely adopted in sensor applications and beyond Supports multi-master and multidrop capability features	Full duplex communication Push-pull drivers Good signal integrity and high speed below 20MHz (higher speed are challenging) Higher throughput than I²C and SMBus Not limited to 8-bit words Arbitrary choice of message size, content and purpose Simple hardware interfacing Lower power than I²C No arbitration or associated failure modes Slaves use the master's clock Slaves do not need a unique address Not limited by a standard to any maximum clock speed (can vary between SPI devices)

From MIPI I3C White paper: http://resources.mipi.org/MIPI I3C-sensor-whitepaper-from-mipi-alliance


PUBLIC 39

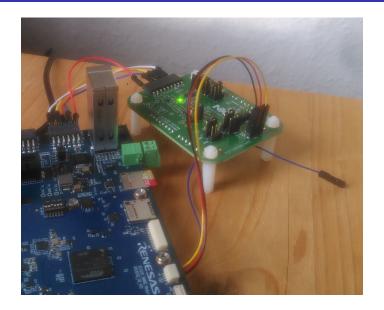

Adoption of I3C controller drivers

2018 Cadence, Designware2020 MIPI HCI2021 Silvaco (NXP)2025 Qualcomm, Renesas


Adoption of Linux I3C target drivers

Adoption of Linux I3C target drivers

Adoption of Linux I3C target drivers


Converting an I2C driver is not hard

- Documentation is there
- I3C regmap support existed early
- what are the problems?

Problem: Target availability

- still only few chips available
- even fewer development boards
- for hackers too expensive in the \$100 range
- mostly very basic I3C support didn't find HDR and HotJoin yet

My solution for testing a new I3C controller

Details about my solution

- P3T1085UK-ARD for 15€ at NXP
- added P3T1755 (free sample)
- connected I2C bus from host.
- targets are supported upstream
- two I3C devices for real bus scenarios
- IBI (without payload) possible
- can handle 1.8V and 3.3V IO
- can be switched back to I2C for verification

Problem: expensive debugging tools

- USB adapters and analyzers in the €1500-€2000 range
- could not find independent reviews about them

'Xyphro' to the rescue

- I3C analyzer plugin for Logic2 software¹
- source available
- worked totally fine for my cases
- true hacker's spirit, forgot the license

¹https://github.com/xyphro/XyphroLabs-I3C-Saleae-Protocol-Analyzer

Problem: Controller availability

Using Linux

- mostly on newer SoCs
- boards either expensive or not available yet in the €500 - €2000 range
- not exposed on some carrier boards by default

And outside Linux

- MCUs usually are target only
- ... or they lack software support Renesas EK-RA4E2 has good support for Zephyr, well, except I3C

'Xyphro' to the rescue again

- USB-to-I3C adapter based on Raspberry PI Pico²
- < 10€ for board and level shifter.
 </p>
- MIT licensed
- supports even HDR-DDR transmissions
- haven't tried it yet but sounds awesome

²https://github.com/xyphro/I3CBlaster

Problem: complexity also on the core side

Status and to-do list

- Things have moved forward
 - Hardware manufacturers more and more interested
 - ► Three controller drivers upstream
 - ▶ One IMU device driver upstream (not fully leveraging the power of I3C vet)
 - Ongoing controller handover work https://lkml.kernel.org/lkml/1606716983-3645-1git-send-email-pthombar@cadence.com/
- There is still room for improvement
 - ► HDR support
 - ► I3C target interface
 - Global and directed resets
 - Time synchronization
 - /dev interface with additional user controls?

bootin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

51/1

My conclusions about I3C

- complexity shifted from hardware to software
- progress is slow, doesn't feel like it has momentum
- I3C will be used it made its way into specifications (DDR5, PCI Express)
- it will be mainly and slowly driven by the industry not very approachable for hackers
- key features will remain unsupported in Linux at least for a very long time
- I2C will stay around because of its simplicity
- make I3C hackable

This talk is heavily supported by

The End

Questions? Comments?

Questions?

- Right here, right now (lightning talk)
- At the conference (it's over after this)
- wsa@kernel.org

References

- MIPI I3C Technology by Emmanuel T. Nana / NXP, 08/2017
- I3C in tomorrow's designs by Miquel Raynal / Bootlin, Fall 2021