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https://github.com/a3f

Embedded Systems

Can be very diverse
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Embedded Systems

But ...

.......
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Embedded Systems

But sometimes less so




Hardware Variants

* New product based on existing one

* Hardware often designed with future variants in mind
* DNP: Do Not Place components

* CPU meant to query hardware revision

* And if not, hardware revisions will often happen anyway
= Try out a different chip
= Replace unsourcable part

= Strip down to save costs
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Multiple Image vs Single Image

Multiple Images

= All differences contained in build
system

= Compiler can be tuned
specifically for used CPU

* Smallest Image size

= Reduced risk of breaking other
platforms

Single Image
Shorter overall build time
Less bitrot/divergence of shared code
Fewer artifacts
= Easier Cl and Testing
Improved user experience:
= Single image to flash
= Single USB-stick to recover

= Less pitfalls to document
ﬁ7/40
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Multiple Images

Separate OE/Yocto MACHINE per machine

Duplicate machine configuration with small changes
Add MACHINE-specific overrides where needed ©
Images become specific to this MACHINE

DEPENDS : append:my-new-machine = "extra-dependency"

do install:append:my-new-machine() {
# extra steps
}
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https://docs.yoctoproject.org/bitbake/bitbake-user-manual/bitbake-user-manual-metadata.html#appending-and-prepending-override-style-syntax

Single Image

= Core idea: shared code with dynamic configuration at runtime
= Lots of software read config files = Need to vary configuration per hardware

= Single image per hardware # Single image for all functions

= Rule of Thumb: It should be possible to have a single command that builds all software
related to a platform: Update bundles, disk images, recovery images ...

= Rest of the talk introduces a toolbox on how to achieve a single image
in the order that the system boots

- |f you have questions or alternative suggestions during the talk,
just shout (or raise your hand)




In the beginning was the kernel

= Linux is our Hardware Abstraction Layer
= Single kernel per ISA possible, but...
= ... lots of other devices need to be matched to drivers
= Some busses like USB and PCl are enumerable, so matching is easy

= But most peripherals on System-on-Chips are not enumerable

— Hardware expected to come with a hardware description (ACPI/DT)

ﬁ‘IMO



OpenFirmware Device Tree

= Data structure to describe a computer's hardware components

= Tree of nodes with properties, e.g. compatible = "acme,my-fancy-board"

= Shipping Device Tree preflashed does not work well
= Understanding of hardware evolves
= Older kernels won't understand new bindings

= Going against the grain: Much more coverage for matching kernel + DT

= Instead: Ship DT alongside kernel. Bootloader selects the correct one

= Bootloader Specification®¥, distroboot™, FITY, UKI..


https://uapi-group.org/specifications/specs/boot_loader_specification/
https://www.barebox.org/doc/latest/user/booting-linux.html
https://u-boot.readthedocs.io/en/latest/develop/distro.html
https://github.com/open-source-firmware/flat-image-tree/releases/tag/v0.8
https://uapi-group.org/specifications/specs/unified_kernel_image/

Pitfalls with FIT

* Hardcoded load and entry addresses

- Bootloader should figure it out

* Bootloader hardcodes configuration name

= - Bootloader should compare DT compatibles &

= OE-core's kernel-fitimage.bbclass does both
these things by default...



https://lore.kernel.org/openembedded-core/c06fd1f96f8f4730b7e737f4174dadf9@diehl.com/

Bootloader

* Needs to figure out what hardware it's running on

* Let's assume for now: bootloader outside main storage area

= Arguably still One Image to rule them all

= Thanks to eMMC HW boot partitions %, increasingly common configuration
= Different bootloader per board

= Native support: barebox multi images %, TF-A for STM32MP15%

= BSP-side support: Yocto UBOOT_CONFIG &

= Yocto multi-config (@' (Overkill for this use case)
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https://pengutronix.de/en/blog/2020-10-15-anpassen-einer-emmc.html
https://www.barebox.org/doc/latest/user/multi-image.html
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e772a6d1864af79372b593ad20ee1c7599d2cfa2
https://docs.yoctoproject.org/ref-manual/variables.html?highlight=uboot_config#term-UBOOT_CONFIG
https://docs.yoctoproject.org/ref-manual/variables.html?highlight=uboot_config#term-BBMULTICONFIG

Device-Tree Fixups

= Appropriate kernel device tree has been selected

= Fixups code is run on it to manipulate it:
» Default: /chosen/bootargs, /chosen/linux,initrd-{start,end}
* Extra: mac-address, /memory nodes

* Board-specifc and architecture specific fixups possible



Device-Tree Fixups: Board-specific

* Detect available hardware somehow and fix it up %

barebox@Sandbox:/ of property -fs display® compatible powertip,ph320240t028 zha
barebox@Sandbox:/ of diff /mnt/tftp/afa-oftree-${global.hostname} +

panel {
- compatible = "powertip,ph320240t023 iha";
compatible = "powertip,ph320240t028 zha";

+
};


https://www.barebox.org/doc/latest/commands/misc/of_property.html
https://www.barebox.org/doc/latest/commands/misc/of_diff.html

Device-Tree Fixups continued

= Board-specific fixups &%

static int my_board display fixup(struct device node *root, void * data)
{
struct device node *display = of find node by alias(root, "display0");
if (!display)
return -EINVAL;

return of property write string(display, "compatible",
"powertip,ph320240t028 zha");

}
static int my_customboard_probe(struct device *dev)
{
return of register fixup(my board display fixup, NULL);
}

* For U-Boot, don't forget fdt_increase_size()!® ﬁ
17740


https://elixir.bootlin.com/barebox/v2023.09.0/source/include/of.h#L269
https://elixir.bootlin.com/barebox/v2023.09.0/source/arch/arm/boards/zii-imx8mq-dev/board.c#L50
https://lore.kernel.org/all/20230704170945.1533283-1-festevam@gmail.com/

Device-Tree Fixups continued

= arch-specific fixups. U-Boot example®:

int disable_vpu_nodes(void *blob)

{
static const char * const nodes_path_8mm[] = {
"/vpu_gl@38300000", "/vpu_g2@38310000",
}i
if (is_imx8mm_lite())
return disable_fdt_nodes(blob,
nodes_path_8mm,
ARRAY_SIZE(nodes_path_8mm));
return -EPERM;
}
int ft_system_setup(void *blob, struct bd_info *bd)
{
disable_vpu_nodes(blob);
}

= Look up by alias® or compatible® where possible.

= In barebox use of_get_node_by_reproducible_name™

Don't hardcode

device tree node names!



https://elixir.bootlin.com/u-boot/v2023.10/source/arch/arm/mach-imx/imx8m/soc.c#L876
https://elixir.bootlin.com/barebox/v2023.09.0/A/ident/of_find_node_by_alias
https://elixir.bootlin.com/barebox/v2023.09.0/A/ident/of_find_compatible_node
https://elixir.bootlin.com/barebox/latest/source/drivers/of/base.c#L3027
https://elixir.bootlin.com/barebox/v2023.09.0/source/drivers/base/featctrl.c#L136

Device-Tree Overlays

Useful for optional daughter boards / capes

Special case of device tree fixup, changes described as DT

Supported by BLSpec, distroboot & FIT

Caveat: can't delete nodes! But can override the status property

/dts-vl/;
/plugin/

&i2c0 {
rtc@68 {
compatible = "dallas,ds3231";
reg = <0x68>;
}i
}i




DT Overlays in Linux

* Patch set available for many years
= Exists in weird limbo state of being partially merged

* A lot of complexity most projects can do without
= Drivers need awareness that DT changed under them

= of_mutex held during overlay application

— Just let the bootloader handle it
(or interface directly with FPGA manager if required)



Off to Userspace

Kernel gota DT
What now?




Making applications portable

= User application will need to interact with the real world
= Everything is a fHe symlink
= Use existing symlinks, don't hardcode device hierarchies

- /sys/devices/platform/soc@0/soc@0:bus@30000000/30350000.0cotp-ctrl/imx-ocotp0/nvmem
+ /sys/bus/nvmem/devices/imx-ocotp0/nvmem

= Or create new ones as appropriate

ACTION=="add", SUBSYSTEM=="tty", KERNEL=="ttymxc2", SYMLINK="ttySTM"

= Added benefit: More robust across kernel updates ﬁym



Block device paths

= /dev/mmcblkXpY

= Stable since v5.10 if DT aliases are used®

= Good for kernel root=t, but different variants can have different partitioning
= /dev/sdX

= No guarantees. Need udev rules for stable symlinks


https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fa2d0aa96941
https://elixir.bootlin.com/barebox/v2023.09.0/source/common/Kconfig#L711

udev: block device paths

udev ships with 60-persistent-storage.rules, but: last processed device wins

/dev/disk/by-uuid, /dev/disk/by-label
File System/Partition UUID may be the same for A/B partitions in A/B system
/dev/disk/by-partlabel, /dev/disk/by-partuuid
User inserts both SD with same image as eMMC
/dev/disk/by-id
Factors in device serial, which makes it cumbersome for using same image
/dev/disk/by-path
Upstream rename: platform-083b66060.sdhci — platform-3b66066.mmc




udev: stable block device paths

= Instead: Write your own rules, identifying devices by
usage or by stable topology

ENV{ID PART_ENTRY_SCHEME}=="gpt", \
ENV{ID_ PART_ENTRY_NAME}=="7?*", ENV{ID_PATH}=="7*", \
SYMLINK+="disk/by-pathlabel/$env{ID PATH}/$env{ID_ PART_ENTRY_ NAME}"

* Result: /dev/disk/by-pathlabel/platform-36b600668.mmc/rootfs-a —
../../../mmcblkOp3

= Hopefully coming soon to a systemd-udevd near you (systemd PR #29219)%


https://github.com/systemd/systemd/pull/29219

udev: /sys symlinks via DT Aliases

= Not how you're supposed to use it, but easy way to get stable links into /sys

/ { aliases { eeprom@ = &eeprom_som; } }

ACTION=="add", ENV{OF_ALIAS 0}=="?*", RUN+="/bin/mkdir -p /dev/by-ofalias", \
RUN+="/bin/ln -sfn /sys%p /dev/by-ofalias/%E{OF ALIAS 0}"

$ 1s /dev/by-ofalias/
eeprom0@/ gpio0/ gpio2/ i2cl/ mmcO/ sail/
seriall/ serial3/ ethernet0/ gpiol/ serial2/ spi0/

readlink /dev/by-ofalias/eeprom0
/sys/devices/platform/soc@0/30800000.bus/30a50000.i2c/i2c-1/1-0050/1-00501



udev: matching by compatiblez

#!/bin/sh
# save as /usr/lib/udev/of base compatible
printf 'OF _BASE_COMPATIBLE="%s"\n' "$(tr '\0' ' ' <\

/sys/firmware/devicetree/base/compatible)"

ACTION=="remove", GOTO="system partitions_end"
SUBSYSTEM!="block", GOTO="system partitions_end"

IMPORT{program}="of base compatible"

ENV{OF_BASE_COMPATIBLE}=="*acme,quirky-board*", GOTO=quirky board



https://git.pengutronix.de/cgit/DistroKit/commit/?h=next&id=ca6716f808f27ee77d7b09fb04bf89a7ad3c1a22

systemd: Condition*

= udev created symlinks can be used with ConditionPathExists®

= Fallback: Match against board compatible with ConditionFirmware

[Unit]
Description=Read/Write Storage, persistent over Reboots and Updates

# run before services causing high CPU load
Before=systemd-udevd.service systemd-journald.service systemd-udev-trigger.service

ConditionFirmware=device-tree-compatible(acme, fastest-booting-device)

[Mount]
# use symlink to data partition outside of /dev to get rid of udev dependency

What=/dev/mmcbhlk0Op4
Where=/data

Type=ext4
Options=rw,nosuid, noexec
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https://www.freedesktop.org/software/systemd/man/systemd.unit.html

systemd: use well-known targets

= Required-by=boot-complete.target
= Wanted-by=graphical.target

[Unit]
Before=graphical. target
Requires=weston.socket

[Service]

Type=notify

EnvironmentFile=/etc/default/weston
ExecStart=/usr/bin/weston --modules=systemd-notify.so

[Install]
WantedBy=graphical.target



systemd-networkd

= Matching by device tree compatible possible since v251

[Match]

Name=swp3

KernelCommandLine=!nfsroot
Firmware=device-tree-compatible(acme, best-switch)

[Network]
Bridge=bro

[BridgeVLAN]
PVID=1
EgressUntagged=1
VLAN=2

ﬂiomo



Runtime configuration generation

#!/bin/sh
original=/etc/xdg/weston/weston.ini

if [ -e "/data/weston.ini" ]; then
ln -s -f /data/weston.ini "$1/weston.ini"
exit 0

fi

ini="¢$(mktemp -p "$1" weston.ini.XXXXXX)"

{
echo "# originally from '$original'";
cat $original;

echo "# automatically generated from XXXX";

echo;
} >>||$ini||

# [ insert dynamic stuff here ]

mv "$ini" "$1/weston.ini"

[Unit]

Description="Weston, a Wayland compositor"
RequiresMountsFor=/run
RequiresMountsFor=/data

[Service]
Environment="XDG_CONFIG_HOME=/run"
ExecStartPre=weston-config-write.sh /run
ExecStart=weston




Back to the Bootloader




RAUC Variants: Configuration=

[system]

compatible=acme-imx8
bootloader=barebox
statusfile=/data/rauc-statusfile
variant-file=/sys/devices/soc0/soc_id
data-directory=/data/rauc

[slot.bootloader.0]
device=/dev/mmcbl1k0
type=boot-emmc

[handlers]
post-install=/usr/bin/rauc-post-install

inherit bundle

[...]

RAUC_SLOT_barebox-imx8mm = "barebox"

RAUC_SLOT barebox-imx8mm[type] = "boot"
RAUC_SLOT_barebox-imx8mm[file] = "barebox-acme-imx8mm.img"
# No .i.MX8MM suffix to stay backwards compatible
RAUC_SLOT_barebox-imx8mm[name] = "bootloader"

RAUC_SLOT_barebox-imx8mn = "barebox"
RAUC_SLOT_barebox-imx8mn[type] "boot"

RAUC_SLOT barebox-imx8mn[file] = "barebox-acme-imx8mn.img"
RAUC_SLOT_barebox-imx8mn[name] = "bootloader.i.MX8MN"
RAUC_SLOT_barebox-imx8mn[offset] = "-32K"

BOOT_SLOTS += "barebox-imx8mm barebox-imx8mn"

ﬂjmo


https://rauc.readthedocs.io/en/latest/advanced.html#handling-board-variants-with-a-single-bundle

RAUC Variants: Bundle Manifest

$ rauc info acme-prod-bundle.rauch

[...]
4 Images:
[rootfs]

Filename:
Checksum:

Size:

Adaptive:

[boot-files]

Filename:
Checksum:

Size:
[bootloader]

Filename:
Checksum:

Size:
[bootloader]
Variant:

Filename:
Checksum:

Size:

acme-imx8m.squashfs-xz.verity.img
2a59d59e38091827ce709d3815e3950eef4a6a93af5557a93a7fdfha71460843
100.1 MB (219123712 bytes)

block-hash-index

signed-fitImage-acme-verity-setup-imx8m-imx8m.img
fa51fd49abf67705d6a35d18218c115ff5633aeclf9ebfdc9d5d4956416f57f6
20.7 MB (20725494 bytes)

barebox-acme-imx8mm.img
9a3058157de8b004fc5ddeea90813a3bbad56c76dfadb9c6dcOdcc64476d818d
1.0 MB (1045032 bytes)

i.MX8MN

barebox-acme-imx8mn.img
60e6aadad2d315ff8ab59a827637d123fdb7af4107197¢c9344a1863a59568aca
1.0 MB (1006760 bytes)




Going a step further

Can we have a single bootloader?

msmo



Single Bootloader: Why bother?

= Useful when many variants need to be supported
= Easier factory bootstrap
= Single USB-Stick or SD to recover

= Smaller update bundle size

* No confusion about what's the correct bootloader image
= QSPI, recovery, 2x2Gbit RAM, Variant C with a side of fries

ﬁwm



Bootloader: support multiple boards

= Target common subset of all boards
= Completely different SoCs: Binary acrobatics can make different entry points work

= Similar enough SoCs:
U-Boot: Mostly infeasible, because build is for single SoC due to _weak and #ifdef
barebox: probes completely from device tree on a number of platforms (CONFIG_ARCH_MULTIARCH)

= Detect Board type
= Read EEPROM, probe 12C devices, sample strapping pins, check fusebox, ... etc.

= Set own DT compatible according to detected board type

= Recommended: Manipulate bootloader device tree.

= Otherwise, you lose out on the differences: e.g. no network boot, USB recovery
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Bootloader: dynamic device tree

* Use separate device trees in prebootloader®

extern char _ dtb z imx8mn_evk start[], _ dtb z imx8mn_ddr4 evk start[];
void *fdt;

/* Check if we configured DDR4 in EL3 */
if (readl(MX8M_DDRC_CTL_BASE_ADDR) & BIT(4))
fdt = __dtb_z_imx8mn_ddr4_evk_start;
else
fdt = __dtb_z_imx8mn_evk_start;

imx8mn_barebox_entry(fdt);

* Apply a fixup onto the device tree®

- of _register fixup(my board switch fixup, &variant);
+ my board switch fixup(of get root node(), &variant);

ﬂismo


https://elixir.bootlin.com/barebox/v2023.09.0/source/arch/arm/boards/nxp-imx8mn-evk/lowlevel.c#L140
https://elixir.bootlin.com/barebox/v2023.09.0/source/arch/arm/boards/protonic-imx6/board.c#L956

Bootloader: dynamic device tree

* Apply a built-in overlay®

obj-$(CONFIG_OVERLAY LIVE) += acme best switch.dtbo.o

int acme_probe(struct device *dev)

{
VA P B4
overlay = of_unflatten_dtb(match_data, INT_MAX);
of overlay apply_tree(dev->of_node, overlay);
/L w1 *

}

extern char __dtbo_acme_best_switch_start[];

static const struct of device id acme_board of match[] = {
{ .compatible = "acme,best-switch", .data = __dtbo_acme_best_switch_start },
}i



https://elixir.bootlin.com/barebox/v2023.09.0/source/common/boards/qemu-virt/board.c#L77

Summary

= Bootloader

= Probe board type, fixup kernel DT and possibly bootloader's own DT
= Linux

= Receive hardware appropriate device tree
= systemd

= Activate units only if system fullfills conditions

» User software

= select configuration depending on board
= generate configuration at runtime
= use portable symlinks, with board-specific destination

= beware the hardcoded number: GPIO sysfs indices, IRQ numbers, disk order, ... etc.

= But they must be consistently used, otherwise death by thousand papercuts
= The best time to do so is when adding the first platform momo
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