One Image to Rule Them All

Portably Handling Hardware Variants

Ahmad Fatoum — a.fatoum@pengutronix.de

rPe\ngutromx
! https://www.pengutronix.de




About Me

& Ahmad Fatoum
== Pengutronix e.K.
O a3fe
!

a.fatoum@pengutronix.de

= Kernel and Bootloader Porting
= Driver and Graphics Development
= System Integration

= Embedded Linux Consulting

2/40


https://github.com/a3f

Embedded Systems

Can be very diverse

um|w|xuwur

(For illustration purposes only. No affiliation) 3/40



Embedded Systems

But ...

.......

(For illustration purposes only. No affiliation) ﬂb 4/40



Embedded Systems

But sometimes less so




Hardware Variants

* New product based on existing one

* Hardware often designed with future variants in mind
* DNP: Do Not Place components

* CPU meant to query hardware revision

* And if not, hardware revisions will often happen anyway
= Try out a different chip
= Replace unsourcable part

= Strip down to save costs

ﬁ 6/40



Multiple Image vs Single Image

Multiple Images

= All differences contained in build
system

= Compiler can be tuned
specifically for used CPU

* Smallest Image size

= Reduced risk of breaking other
platforms

Single Image
Shorter overall build time
Less bitrot/divergence of shared code
Fewer artifacts
= Easier Cl and Testing
Improved user experience:
= Single image to flash
= Single USB-stick to recover

= Less pitfalls to document
ﬁ7/40



Multiple Image vs Single Image

Multiple Images

= All differences contained in build
system

= Compiler can be tuned
specifically for used CPU

* Smallest Image size

= Reduced risk of breaking other
platforms

Single Image
Shorter overall build time
Less bitrot/divergence of shared code
Fewer artifacts
= Easier Cl and Testing
Improved user experience:
= Single image to flash
= Single USB-stick to recover

= Less pitfalls to document
FSMO



Multiple Images

Separate OE/Yocto MACHINE per machine

Duplicate machine configuration with small changes
Add MACHINE-specific overrides where needed ©
Images become specific to this MACHINE

DEPENDS : append:my-new-machine = "extra-dependency"

do install:append:my-new-machine() {
# extra steps
}

ﬁ 9/40


https://docs.yoctoproject.org/bitbake/bitbake-user-manual/bitbake-user-manual-metadata.html#appending-and-prepending-override-style-syntax

Single Image

= Core idea: shared code with dynamic configuration at runtime
= Lots of software read config files = Need to vary configuration per hardware

= Single image per hardware # Single image for all functions

= Rule of Thumb: It should be possible to have a single command that builds all software
related to a platform: Update bundles, disk images, recovery images ...

= Rest of the talk introduces a toolbox on how to achieve a single image
in the order that the system boots

- |f you have questions or alternative suggestions during the talk,
just shout (or raise your hand)




In the beginning was the kernel

= Linux is our Hardware Abstraction Layer
= Single kernel per ISA possible, but...
= ... lots of other devices need to be matched to drivers
= Some busses like USB and PCl are enumerable, so matching is easy

= But most peripherals on System-on-Chips are not enumerable

— Hardware expected to come with a hardware description (ACPI/DT)

ﬁ‘IMO



OpenFirmware Device Tree

= Data structure to describe a computer's hardware components

= Tree of nodes with properties, e.g. compatible = "acme,my-fancy-board"

= Shipping Device Tree preflashed does not work well
= Understanding of hardware evolves
= Older kernels won't understand new bindings

= Going against the grain: Much more coverage for matching kernel + DT

= Instead: Ship DT alongside kernel. Bootloader selects the correct one

= Bootloader Specification®¥, distroboot™, FITY, UKI..


https://uapi-group.org/specifications/specs/boot_loader_specification/
https://www.barebox.org/doc/latest/user/booting-linux.html
https://u-boot.readthedocs.io/en/latest/develop/distro.html
https://github.com/open-source-firmware/flat-image-tree/releases/tag/v0.8
https://uapi-group.org/specifications/specs/unified_kernel_image/

Pitfalls with FIT

* Hardcoded load and entry addresses

- Bootloader should figure it out

* Bootloader hardcodes configuration name

= - Bootloader should compare DT compatibles &

= OE-core's kernel-fitimage.bbclass does both
these things by default...



https://lore.kernel.org/openembedded-core/c06fd1f96f8f4730b7e737f4174dadf9@diehl.com/

Bootloader

* Needs to figure out what hardware it's running on

* Let's assume for now: bootloader outside main storage area

= Arguably still One Image to rule them all

= Thanks to eMMC HW boot partitions %, increasingly common configuration
= Different bootloader per board

= Native support: barebox multi images %, TF-A for STM32MP15%

= BSP-side support: Yocto UBOOT_CONFIG &

= Yocto multi-config (@' (Overkill for this use case)

ﬁ 4/40


https://pengutronix.de/en/blog/2020-10-15-anpassen-einer-emmc.html
https://www.barebox.org/doc/latest/user/multi-image.html
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e772a6d1864af79372b593ad20ee1c7599d2cfa2
https://docs.yoctoproject.org/ref-manual/variables.html?highlight=uboot_config#term-UBOOT_CONFIG
https://docs.yoctoproject.org/ref-manual/variables.html?highlight=uboot_config#term-BBMULTICONFIG

Device-Tree Fixups

= Appropriate kernel device tree has been selected

= Fixups code is run on it to manipulate it:
» Default: /chosen/bootargs, /chosen/linux,initrd-{start,end}
* Extra: mac-address, /memory nodes

* Board-specifc and architecture specific fixups possible



Device-Tree Fixups: Board-specific

* Detect available hardware somehow and fix it up %

barebox@Sandbox:/ of property -fs display® compatible powertip,ph320240t028 zha
barebox@Sandbox:/ of diff /mnt/tftp/afa-oftree-${global.hostname} +

panel {
- compatible = "powertip,ph320240t023 iha";
compatible = "powertip,ph320240t028 zha";

+
};


https://www.barebox.org/doc/latest/commands/misc/of_property.html
https://www.barebox.org/doc/latest/commands/misc/of_diff.html

Device-Tree Fixups continued

= Board-specific fixups &%

static int my_board display fixup(struct device node *root, void * data)
{
struct device node *display = of find node by alias(root, "display0");
if (!display)
return -EINVAL;

return of property write string(display, "compatible",
"powertip,ph320240t028 zha");

}
static int my_customboard_probe(struct device *dev)
{
return of register fixup(my board display fixup, NULL);
}

* For U-Boot, don't forget fdt_increase_size()!® ﬁ
17740


https://elixir.bootlin.com/barebox/v2023.09.0/source/include/of.h#L269
https://elixir.bootlin.com/barebox/v2023.09.0/source/arch/arm/boards/zii-imx8mq-dev/board.c#L50
https://lore.kernel.org/all/20230704170945.1533283-1-festevam@gmail.com/

Device-Tree Fixups continued

= arch-specific fixups. U-Boot example®:

int disable_vpu_nodes(void *blob)

{
static const char * const nodes_path_8mm[] = {
"/vpu_gl@38300000", "/vpu_g2@38310000",
}i
if (is_imx8mm_lite())
return disable_fdt_nodes(blob,
nodes_path_8mm,
ARRAY_SIZE(nodes_path_8mm));
return -EPERM;
}
int ft_system_setup(void *blob, struct bd_info *bd)
{
disable_vpu_nodes(blob);
}

= Look up by alias® or compatible® where possible.

= In barebox use of_get_node_by_reproducible_name™

Don't hardcode

device tree node names!



https://elixir.bootlin.com/u-boot/v2023.10/source/arch/arm/mach-imx/imx8m/soc.c#L876
https://elixir.bootlin.com/barebox/v2023.09.0/A/ident/of_find_node_by_alias
https://elixir.bootlin.com/barebox/v2023.09.0/A/ident/of_find_compatible_node
https://elixir.bootlin.com/barebox/latest/source/drivers/of/base.c#L3027
https://elixir.bootlin.com/barebox/v2023.09.0/source/drivers/base/featctrl.c#L136

Device-Tree Overlays

Useful for optional daughter boards / capes

Special case of device tree fixup, changes described as DT

Supported by BLSpec, distroboot & FIT

Caveat: can't delete nodes! But can override the status property

/dts-vl/;
/plugin/

&i2c0 {
rtc@68 {
compatible = "dallas,ds3231";
reg = <0x68>;
}i
}i




DT Overlays in Linux

* Patch set available for many years
= Exists in weird limbo state of being partially merged

* A lot of complexity most projects can do without
= Drivers need awareness that DT changed under them

= of_mutex held during overlay application

— Just let the bootloader handle it
(or interface directly with FPGA manager if required)



Off to Userspace

Kernel gota DT
What now?




Making applications portable

= User application will need to interact with the real world
= Everything is a fHe symlink
= Use existing symlinks, don't hardcode device hierarchies

- /sys/devices/platform/soc@0/soc@0:bus@30000000/30350000.0cotp-ctrl/imx-ocotp0/nvmem
+ /sys/bus/nvmem/devices/imx-ocotp0/nvmem

= Or create new ones as appropriate

ACTION=="add", SUBSYSTEM=="tty", KERNEL=="ttymxc2", SYMLINK="ttySTM"

= Added benefit: More robust across kernel updates ﬁym



Block device paths

= /dev/mmcblkXpY

= Stable since v5.10 if DT aliases are used®

= Good for kernel root=t, but different variants can have different partitioning
= /dev/sdX

= No guarantees. Need udev rules for stable symlinks


https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fa2d0aa96941
https://elixir.bootlin.com/barebox/v2023.09.0/source/common/Kconfig#L711

udev: block device paths

udev ships with 60-persistent-storage.rules, but: last processed device wins

/dev/disk/by-uuid, /dev/disk/by-label
File System/Partition UUID may be the same for A/B partitions in A/B system
/dev/disk/by-partlabel, /dev/disk/by-partuuid
User inserts both SD with same image as eMMC
/dev/disk/by-id
Factors in device serial, which makes it cumbersome for using same image
/dev/disk/by-path
Upstream rename: platform-083b66060.sdhci — platform-3b66066.mmc




udev: stable block device paths

= Instead: Write your own rules, identifying devices by
usage or by stable topology

ENV{ID PART_ENTRY_SCHEME}=="gpt", \
ENV{ID_ PART_ENTRY_NAME}=="7?*", ENV{ID_PATH}=="7*", \
SYMLINK+="disk/by-pathlabel/$env{ID PATH}/$env{ID_ PART_ENTRY_ NAME}"

* Result: /dev/disk/by-pathlabel/platform-36b600668.mmc/rootfs-a —
../../../mmcblkOp3

= Hopefully coming soon to a systemd-udevd near you (systemd PR #29219)%


https://github.com/systemd/systemd/pull/29219

udev: /sys symlinks via DT Aliases

= Not how you're supposed to use it, but easy way to get stable links into /sys

/ { aliases { eeprom@ = &eeprom_som; } }

ACTION=="add", ENV{OF_ALIAS 0}=="?*", RUN+="/bin/mkdir -p /dev/by-ofalias", \
RUN+="/bin/ln -sfn /sys%p /dev/by-ofalias/%E{OF ALIAS 0}"

$ 1s /dev/by-ofalias/
eeprom0@/ gpio0/ gpio2/ i2cl/ mmcO/ sail/
seriall/ serial3/ ethernet0/ gpiol/ serial2/ spi0/

readlink /dev/by-ofalias/eeprom0
/sys/devices/platform/soc@0/30800000.bus/30a50000.i2c/i2c-1/1-0050/1-00501



udev: matching by compatiblez

#!/bin/sh
# save as /usr/lib/udev/of base compatible
printf 'OF _BASE_COMPATIBLE="%s"\n' "$(tr '\0' ' ' <\

/sys/firmware/devicetree/base/compatible)"

ACTION=="remove", GOTO="system partitions_end"
SUBSYSTEM!="block", GOTO="system partitions_end"

IMPORT{program}="of base compatible"

ENV{OF_BASE_COMPATIBLE}=="*acme,quirky-board*", GOTO=quirky board



https://git.pengutronix.de/cgit/DistroKit/commit/?h=next&id=ca6716f808f27ee77d7b09fb04bf89a7ad3c1a22

systemd: Condition*

= udev created symlinks can be used with ConditionPathExists®

= Fallback: Match against board compatible with ConditionFirmware

[Unit]
Description=Read/Write Storage, persistent over Reboots and Updates

# run before services causing high CPU load
Before=systemd-udevd.service systemd-journald.service systemd-udev-trigger.service

ConditionFirmware=device-tree-compatible(acme, fastest-booting-device)

[Mount]
# use symlink to data partition outside of /dev to get rid of udev dependency

What=/dev/mmcbhlk0Op4
Where=/data

Type=ext4
Options=rw,nosuid, noexec

ll 28/40


https://www.freedesktop.org/software/systemd/man/systemd.unit.html

systemd: use well-known targets

= Required-by=boot-complete.target
= Wanted-by=graphical.target

[Unit]
Before=graphical. target
Requires=weston.socket

[Service]

Type=notify

EnvironmentFile=/etc/default/weston
ExecStart=/usr/bin/weston --modules=systemd-notify.so

[Install]
WantedBy=graphical.target



systemd-networkd

= Matching by device tree compatible possible since v251

[Match]

Name=swp3

KernelCommandLine=!nfsroot
Firmware=device-tree-compatible(acme, best-switch)

[Network]
Bridge=bro

[BridgeVLAN]
PVID=1
EgressUntagged=1
VLAN=2

ﬂiomo



Runtime configuration generation

#!/bin/sh
original=/etc/xdg/weston/weston.ini

if [ -e "/data/weston.ini" ]; then
ln -s -f /data/weston.ini "$1/weston.ini"
exit 0

fi

ini="¢$(mktemp -p "$1" weston.ini.XXXXXX)"

{
echo "# originally from '$original'";
cat $original;

echo "# automatically generated from XXXX";

echo;
} >>||$ini||

# [ insert dynamic stuff here ]

mv "$ini" "$1/weston.ini"

[Unit]

Description="Weston, a Wayland compositor"
RequiresMountsFor=/run
RequiresMountsFor=/data

[Service]
Environment="XDG_CONFIG_HOME=/run"
ExecStartPre=weston-config-write.sh /run
ExecStart=weston




Back to the Bootloader




RAUC Variants: Configuration=

[system]

compatible=acme-imx8
bootloader=barebox
statusfile=/data/rauc-statusfile
variant-file=/sys/devices/soc0/soc_id
data-directory=/data/rauc

[slot.bootloader.0]
device=/dev/mmcbl1k0
type=boot-emmc

[handlers]
post-install=/usr/bin/rauc-post-install

inherit bundle

[...]

RAUC_SLOT_barebox-imx8mm = "barebox"

RAUC_SLOT barebox-imx8mm[type] = "boot"
RAUC_SLOT_barebox-imx8mm[file] = "barebox-acme-imx8mm.img"
# No .i.MX8MM suffix to stay backwards compatible
RAUC_SLOT_barebox-imx8mm[name] = "bootloader"

RAUC_SLOT_barebox-imx8mn = "barebox"
RAUC_SLOT_barebox-imx8mn[type] "boot"

RAUC_SLOT barebox-imx8mn[file] = "barebox-acme-imx8mn.img"
RAUC_SLOT_barebox-imx8mn[name] = "bootloader.i.MX8MN"
RAUC_SLOT_barebox-imx8mn[offset] = "-32K"

BOOT_SLOTS += "barebox-imx8mm barebox-imx8mn"

ﬂjmo


https://rauc.readthedocs.io/en/latest/advanced.html#handling-board-variants-with-a-single-bundle

RAUC Variants: Bundle Manifest

$ rauc info acme-prod-bundle.rauch

[...]
4 Images:
[rootfs]

Filename:
Checksum:

Size:

Adaptive:

[boot-files]

Filename:
Checksum:

Size:
[bootloader]

Filename:
Checksum:

Size:
[bootloader]
Variant:

Filename:
Checksum:

Size:

acme-imx8m.squashfs-xz.verity.img
2a59d59e38091827ce709d3815e3950eef4a6a93af5557a93a7fdfha71460843
100.1 MB (219123712 bytes)

block-hash-index

signed-fitImage-acme-verity-setup-imx8m-imx8m.img
fa51fd49abf67705d6a35d18218c115ff5633aeclf9ebfdc9d5d4956416f57f6
20.7 MB (20725494 bytes)

barebox-acme-imx8mm.img
9a3058157de8b004fc5ddeea90813a3bbad56c76dfadb9c6dcOdcc64476d818d
1.0 MB (1045032 bytes)

i.MX8MN

barebox-acme-imx8mn.img
60e6aadad2d315ff8ab59a827637d123fdb7af4107197¢c9344a1863a59568aca
1.0 MB (1006760 bytes)




Going a step further

Can we have a single bootloader?

msmo



Single Bootloader: Why bother?

= Useful when many variants need to be supported
= Easier factory bootstrap
= Single USB-Stick or SD to recover

= Smaller update bundle size

* No confusion about what's the correct bootloader image
= QSPI, recovery, 2x2Gbit RAM, Variant C with a side of fries

ﬁwm



Bootloader: support multiple boards

= Target common subset of all boards
= Completely different SoCs: Binary acrobatics can make different entry points work

= Similar enough SoCs:
U-Boot: Mostly infeasible, because build is for single SoC due to _weak and #ifdef
barebox: probes completely from device tree on a number of platforms (CONFIG_ARCH_MULTIARCH)

= Detect Board type
= Read EEPROM, probe 12C devices, sample strapping pins, check fusebox, ... etc.

= Set own DT compatible according to detected board type

= Recommended: Manipulate bootloader device tree.

= Otherwise, you lose out on the differences: e.g. no network boot, USB recovery

ﬁ7/40



Bootloader: dynamic device tree

* Use separate device trees in prebootloader®

extern char _ dtb z imx8mn_evk start[], _ dtb z imx8mn_ddr4 evk start[];
void *fdt;

/* Check if we configured DDR4 in EL3 */
if (readl(MX8M_DDRC_CTL_BASE_ADDR) & BIT(4))
fdt = __dtb_z_imx8mn_ddr4_evk_start;
else
fdt = __dtb_z_imx8mn_evk_start;

imx8mn_barebox_entry(fdt);

* Apply a fixup onto the device tree®

- of _register fixup(my board switch fixup, &variant);
+ my board switch fixup(of get root node(), &variant);

ﬂismo


https://elixir.bootlin.com/barebox/v2023.09.0/source/arch/arm/boards/nxp-imx8mn-evk/lowlevel.c#L140
https://elixir.bootlin.com/barebox/v2023.09.0/source/arch/arm/boards/protonic-imx6/board.c#L956

Bootloader: dynamic device tree

* Apply a built-in overlay®

obj-$(CONFIG_OVERLAY LIVE) += acme best switch.dtbo.o

int acme_probe(struct device *dev)

{
VA P B4
overlay = of_unflatten_dtb(match_data, INT_MAX);
of overlay apply_tree(dev->of_node, overlay);
/L w1 *

}

extern char __dtbo_acme_best_switch_start[];

static const struct of device id acme_board of match[] = {
{ .compatible = "acme,best-switch", .data = __dtbo_acme_best_switch_start },
}i



https://elixir.bootlin.com/barebox/v2023.09.0/source/common/boards/qemu-virt/board.c#L77

Summary

= Bootloader

= Probe board type, fixup kernel DT and possibly bootloader's own DT
= Linux

= Receive hardware appropriate device tree
= systemd

= Activate units only if system fullfills conditions

» User software

= select configuration depending on board
= generate configuration at runtime
= use portable symlinks, with board-specific destination

= beware the hardcoded number: GPIO sysfs indices, IRQ numbers, disk order, ... etc.

= But they must be consistently used, otherwise death by thousand papercuts
= The best time to do so is when adding the first platform momo



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

