
Add the power of the
Web to your embedded

devices with WPE WebKit
Mario Sánchez Prada

1

About me
CS Engineer, partner of Igalia
Involvement in some Open Source communities

e.g. Chromium, WebKit, GNOME

Other work done in the past:
Linux-based OS’s (i.e. Endless OS, Litl OS)
Maemo (Hildon Application Manager)
Samsung SmartTV platform

Currently coordinating Igalia's WebKit team

2

3

About Igalia
Specialized Open Source consultancy, founded in 2001
Fully remote, headquartered in A Coruña, Galicia (Spain)
Worker-owned, employee-run, flat structure (140+ igalians)
Top contributors to the main Web Rendering Engines:

WebKit, Chromium, Gecko and Servo

Active contributor to other areas and OSS projects
V8, SpiderMonkey, JSC, LLVM, Node.js, GStreamer, Mesa, Linux Kernel...

Members of several working groups:
W3C, WHATWG, WPT, TC39, OpenJS, Test262, Khronos...

https://www.igalia.com

4

https://www.igalia.com/

Web Rendering Engines

5

What is WebKit?

6

What is WebKit?
An Open Source Web rendering engine (mostly BSD)

Started by Apple as a fork of KHTML and KJS in 2001.
Forked again by Google to become Blink in 2013.

Goals: performance, portability, stability, compatibility, standards compliance,
security and "hackability". Embedded-ability.
Available for different platforms and operating systems:

Desktop & Mobile: Mac, iOS and Linux ((e.g. Safari, GNOME Web...)
Embedded: set-top-boxes, video game consoles, smart home appliances, in-
vehicle/inflight entertainment, GPS devices, digital signage...

7

What is WebKit?

Web Browser Engine ≠ Web Browser

8

WebKit Architecture
Application:

What end-users interact with.

WebKit:
Exposes an API to applications and
implements the split-process model.

WebCore:
Layout, rendering, network,
multimedia, accessibility...

JavaScriptCore:
The JavaScript engine.

Platform:
Platform-specific hooks.

9

WebKit Ports
WebKit port: adaptation of WebKit to a specific platform.

Official WebKit Ports (upstream ports)

Mac: Safari, Apple Mail, iTunes, App Store...
iOS: every browser on iOS devices (including Chrome).
AppleWin (deprecated): iTunes, iCloud on Windows
WinCairo (current): Microsoft Playwright, Playstation SDK
Playstation: Playstation s4 & Playstation 5
WebKitGTK: GNOME Web, Evolution, Shotwell...
WPE: Cog and other custom-made "browsers" for embedded devices.

https://docs.webkit.org/Ports/Introduction.html

10

https://docs.webkit.org/Ports/Introduction.html

WebKitGTK and WPE
WebKit ports targetting Linux-based systems

Common parts: GLib, libsoup (networking), GStreamer (multimedia)...
Key differences: graphics stack, input handling. Different use cases.

WebKitGTK:
Go-to solution to embed Web content in GTK applications.
Integration with GNOME components. Supports GTK3 and GTK4.

WPE:
Lower level, aimed at embedded devices.
Requires graphics and input backend to work.

11

WebKit Ports: WebKitGTK

12

What is WPE?

13

What is WPE?
WPE is a WebKit port optimized for Linux embedded devices

Modern and comprehensive implementation of the Web Platform.
Focus on flexibility, security and performance.
Minimal set of dependencies, backends-based architecture.
Low memory and storage footprint.
Great support for HW-accelerated graphics and multimedia.

ℹ https://wpewebkit.org/

14

https://wpewebkit.org/

What is not WPE?
WPE is NOT a general purpose Web Browser

Provides just the building blocks for Web-based applications.
Doesn't implement all the APIs found on other WebKit ports.
Does not rely on any particular UI Toolkit (i.e. backends).
Can also be useful for less conventional use cases
 e.g. server-side rendering, headless mode...

15

Upstream & Downstream WPE
Upstream WPE:

Generic, device-agnostic, free of customizations.
Doesn't assume a particular chipset or platform.
Lives upstream at .

Downstream WPE (aka WebPlatformForEmbedded):
Optimized for set-top boxes on specific HW platforms.
Customizations for Broadcom SoCs and other types of devices.
Better integration with the Reference Design Kit (RDK).
Lives in

ℹ Check for more info on RDK

https://github.com/WebKit/WebKit

https://github.com/WebPlatformForEmbedded/WPEWebKit

https://rdkcentral.com

16

https://github.com/WebKit/WebKit
https://github.com/WebPlatformForEmbedded/WPEWebKit
https://rdkcentral.com/

WPE-based products
Some examples of use cases we are aware about:

Set-Top-Boxes (both RDK and non RDK based)
Smart Home Appliances
HiFi audio/sound systems & music streaming
Digital Signage
GPS navigation devices
Video/Audio conference
Headless server-side rendering
QA and testing
...

17

WPE Architecture
Application:

The end application, which can use WPE
directly or via the provided Cog launcher.

WebKit:
The actual WebKit port, including the API
layer to link against from applications.

Backend:
Platform-specific implementation of the
graphics and/or the input layers.

18

WPE components
WPEWebKit:

The actual WebKit port.
Relies on the backends for page display and input.

libwpe:
Provides rendering-related callbacks implemented by the graphical backend.
Allows the input backend to rely events from the application to WebKit.

WPEBackend-FDO
The reference FreekDesktop.Org-based backend (i.e. Wayland).
Supports several architectures plus regular PC architectures.
Can be replaced by a device-specific backend

Cog:
Small single “window” launcher for WPE, with no user interface.

19

WPE: Graphics & Multimedia

20

WPE: HW-accelerated graphics
ANGLE Support (Almost Native Graphics Layer Engine).

i.e. better WebGL conformance & WebGL2.

Supports DMABuf for efficient buffer-sharing (+fallback impls).
Fallback implementation for DMABuf/GBM-less systems.

New SVG engine
Unify HTML/CSS and SVG + enable HW acceleration.

Experimental GPUProcess support (WIP).

21

WPE: Multimedia
GStreamer-based back-ends for different use cases along with new
GStreamer features developed upstream (core & plugins).

e.g. Media Capture, Media Stream, Media Recorder, WebAudio, MSE, EME...

Improved performance by providing HW acceleration solutions.
Supports DMABuf for GStreamer decoders.

Experimental support (WIP): WebCodecs, WebRTC.

22

Demos

23

Future plans

24

Future plans (1/3)
Release a new and simplified design of WPEWebKit:

One library with minimum dependencies. Less layers for better IPC.
API/ABI backwards compatibility.

Improved graphics pipeline:
Efficient zero-copy buffer sharing when possible (e.g. DMABuf).
HW-accelerated 2D rendering, multiple-buffer support.
GPUProcess, WebGPU.

Improved multimedia stack:
Improve WebCodecs integration with WebGL and WebAudio.
GStreamer-based WebRTC implementation.

25

Future plans (2/3)
Improved tooling for developers and automated testing:

A new container-based SDK is in the works
Improves workflow both on WebKit and its dependencies (e.g. GStreamer).

Improved QA processes:
Better maintenance of WPE's continuous integration system.
Leverage the improvements from having better tooling.

Improved documentation:
Automatically generated API documentation (introspection).
Other documentation.

Align the development of WPE with WebKitGTK.

26

Future plans (3/3)
Support WPE running on Android:

Provide a WebKit-based alternative to the Android WebView widget.
Support for multiple architectures: arm64, armv7, x86-64, x86.
Integration with Android's main loop and Android's Process Management.
HW-accelerated media playback and WebGL support.
Remote Web Inspector.
WebDriver support.
...

No new port needed: uses WPE's public API

27

Wrapping up

28

Wrapping up
Open Source port of WebKit for Linux embedded devices.
Modular and flexible architecture, low resources footprint.
Fits and can adapt to a wide range of use cases.
Hardware acceleration for graphics and multimedia.
Two flavours: upstream and downstream (RDK-centric).
Deployed on millions of all sorts of devices.
Big improvements coming soon around key areas.
Experimenting with WPE Android.

29

Questions?

30

Thanks!

31

32

