
Open First

Running FOSS on a Thermal
Camera

Sebastian Reichel

Collabora

Open First

Who am I?

▶ Kernel Engineer at Collabora
▶ Maintainer of kernel’s power-supply subsystem
▶ Debian Developer
▶ Living in Oldenburg, Germany

▶ Co-Founder of the local hackerspace
▶ Deputy Lead of the Fire Brigade Diver Squad

Open First

What’s a thermal camera?

▶ Camera for infrared (8-14µm) instead of visible spectrum (380nm - 750nm)
▶ Usually low resolution (Kilopixel instead of Megapixel)
▶ Usually low speed
▶ Best known vendor for sensors is FLIR Systems
▶ US export restrictions

▶ 9 FPS, 17 um pixel pitch (~640x480)

Open First

What are they used for?

▶ target search (hence the export restrictions)
▶ search and rescue

▶ finding hot spots after a fire
▶ finding persons, especially in winter

▶ night vision & surveillance
▶ building inspection
▶ electronic fault search
▶ . . .

Open First

UNI-T UTi260B

▶ Thermal Cameras used to be quite expensive or super low resolution
▶ Found a 256x192 camera with 25 FPS for ~300€
▶ For reference, the model we use at the fire brigade costs 2000€ and has roughly the

same specs

Open First

PCB fault

Open First

Software is quite bad

▶ Needs roughly 30 seconds to boot
▶ Taking an image keeps the overlay (like a screenshot)
▶ System is a bit laggy
▶ Colormap automatically rescales and cannot be locked

Open First

Void warranty - Let’s look inside

Open First

Hardware

▶ Green
▶ THGBMNG5 D1LBAIL
▶ 4GB eMMC

▶ Yellow
▶ Debug Pads
▶ Plaintext Labels :)

▶ Red
▶ unpopulated connector
▶ UART?

Open First

Hardware
▶ Yellow

▶ D9SHD
▶ Micron 4Gb

DDR3-1866
▶ Orange

▶ AVC16245
▶ TI bus transceiver

▶ Green
▶ MCIMX6Y2CVM08AB
▶ NXP i.MX6ULL

▶ Red
▶ GND / RX / TX
▶ UART ?

Open First

Camera Module Hardware

Open First

Hardware Hacking
▶ Solder in Connector
▶ Power on the system
▶ Measure Voltages

▶ usually one of 1.8V, 3.3V or 5V
▶ Use matching USB serial adapter

▶ 5V on 1.8V pin breaks the pads and or device!

Open First

Everything is better with Bluetooth

Open First

UART output

U-Boot 2015.04 (Mar 25 2020 - 13:40:37)

CPU: Freescale i.MX6ULL rev1.1 at 396 MHz
CPU: Temperature 36 C
Reset cause: POR
Board: MX6UL 14x14 EVK
I2C: ready
DRAM: 512 MiB
MMC: FSL_SDHC: 0, FSL_SDHC: 1
[...]
Starting kernel ...
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 3.14.38-6UL_ga (ubuntu@ubuntu) (gcc version 4.6.2 20110630 (prerelease) (Freescale MAD -- Linaro 2011.07 -- Built at 2011/08/10 09:20)) #319 SMP PREEMPT Fri Sep 25 09:15:57 CST 2020
[0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c53c7d
[0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
[0.000000] Machine model: Freescale i.MX6 UltraLite 14x14 EVK Board
[...]
UNIT login:

Open First

Investigating hardware

▶ booted into existing system with init=/bin/sh
▶ change root password
▶ reboot
▶ investigate running system

▶ there are two V4L2 devices
▶ one is i.MX6ULL CSI
▶ one is USB Video Class

▶ there is one binary running
▶ unstripped, linked against Qt and OpenCV

▶ there is basically no optimization
▶ system has ALSA, Can, Network, Bluetooth, . . .

▶ let’s switch to our own setup

Open First

U-Boot
=> printenv bootcmd
bootcmd=

if mmc rescan; then
if run loadbootscript; then

run bootscript;
else

if test ${bootdev} = sd1; then
echo update firmware.........;
run update_from_sd;

else
echo mmc boot..........;
if run loadimage;

then run mmcboot;
else run netboot;

fi;
fi;

fi;
else

run netboot;
fi;

Open First

U-Boot

▶ loadbootscript tries to load boot.scr from eMMC. . .
▶ . . . but that’s not used by UNI-T
▶ modify that to check for boot.scr on SD card
▶ TODO: find an exploit in original FW that can do this

=> printenv loadbootscript
loadbootscript=fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${script};
=> printenv mmcdev
mmcdev=1
=> printenv mmcpart
mmcpart=1
=> setenv loadbootscript 'fatload mmc 0:1 ${loadaddr} ${script};'
=> saveenv

Open First

Prepare SD card

▶ Create FAT partition for U-Boot with boot.scr
▶ echo "Executing boot.scr from MicroSD card..."

setenv mmcroot '/dev/mmcblk0p2 rootwait rw console=ttymxc0,115200n8'
setenv fdt_file imx6ull-uti260b.dtb
setenv mmcdev 0
run loadimage
run loadfdt
run mmcargs
bootz ${loadaddr} - ${fdt_addr}

▶ debootstrap –arch=armhf testing /mnt/sdcard

Open First

Kernel & DT

▶ i.MX6ULL is supported mainline
▶ make imx_v6_v7_defconfig
▶ sed -i "s/=m/=y/g" .config
▶ (optionally) go through config and remove unnecessary stuff

▶ e.g. Bluetooth and WLAN
▶ my zImage went down from 40MB to 3.6MB
▶ faster boot, faster copy-to-device => faster test cycles

▶ start with very small device DT
▶ Model
▶ UART
▶ Memory
▶ SD card

Open First

Watchdog

▶ device has no hard reset button
▶ option 1: wait for battery to be empty
▶ option 2: open device and disconnect battery
▶ option 3: make sure device never hangs
▶ option 4: modify hardware

▶ (e.g. add normally closed reed switch)

Open First

Improving hardware support

▶ Original system leaks information
▶ DT blob can be decompiled

▶ dtc -I dtb -O dts imx6ul-14x14-evk.dtb > dump.dts
▶ GPIOs can be investigated in sysfs

▶ some of them might not be GPIOs in mainline
▶ e.g. <&gpio2 2> controls the flashlight LED (leds-gpio)
▶ e.g. <&gpio2 3> is the power button (gpio-keys)

▶ Bootloader also leaks information
▶ Original Linux just configures LCDIF
▶ But U-Boot states LCD st7789v init successfully!
▶ That’s an SPI controller
▶ bootloader pinmux reveals the right SPI port

Open First

USB

▶ The device has a USB-C port
▶ Used for charging, but also supports USB gadget mode
▶ Original FW offers to screencast via USB UVC

▶ Add bootscript to enable USB gadget mode with ECM
▶ Device will provide itself as ethernet device
▶ One can SSH to it

Open First

Hardware that did not work OOTB

▶ Battery Handling (6.5)
▶ Charger is TP5000 (found on PCB)
▶ Has a GPIO to report that a charger is connected
▶ There’s a second GPIO to report that charging is done
▶ For Battery only Voltage is available via ADC
▶ there are existing gpio-charger and adc-battery drivers
▶ https://lore.kernel.org/all/20230317225707.1552512-1-sre@kernel.org/

▶ Display Driver (6.6)
▶ Labeled “Inanbo T28CP45TN89 v17”
▶ Tried to use existing ST7789V driver
▶ flipped some bits and got it working
▶ https://lore.kernel.org/all/20230714013756.1546769-1-sre@kernel.org/

▶ Cameras

Open First

Optical Camera

▶ i.MX6ULL CSI driver recently moved from staging
▶ Optical sensor is Galaxycore GC0308 (640x480 / 0.3MP)

▶ No mainline driver :(
▶ datasheet is public, but hard to read
▶ sensor has some ISP functionality (like auto gain)
▶ there’s a bunch of low quality out of tree drivers
▶ many configurations break the i.MX6ULL CSI driver
▶ still WIP

Open First

Optical Camera

Open First

Optical Camera

Open First

Thermal Camera

▶ Exposes UVC
▶ It lies about data format
▶ In addition to UVC also takes vendor USB control commands

▶ e.g. high gain (up to 100°C) VS low gain (up to 550 °C)

gst-launch-1.0 v4l2src device=/dev/video1 !
video/x-raw,format=YUY2,width=256,height=384,framerate=25/1 !
videocrop top=192 ! videoconvert ! videoflip method=clockwise !
videoconvert ! video/x-raw,format=GRAY8 ! videoconvert ! videoscale !
waylandsink

Open First

Thermal Camera (without crop & gray8 convert)

Open First

Fire and Ice

Open First

Thermal Camera UART (57600 baud)

U-Boot 2016.11 (Mar 16 2021 - 02:20:19 +0000)

Sheipa Platform -- Taroko CPU: 500M :rx5281 prid=0xdc02
DRAM: 64 MiB @ 1066 MHz
...
[0.000000] Linux version 4.9.51 (root@a239637c8718) (gcc version 6.4.1 20180425 (Realtek RSDK-6.4.1 Build 3029)) #1 Tue Mar 16 02:21:00 UTC 2021
[0.000000] MIPS: machine is Sheipa Platform
[0.000000] bootconsole [early0] enabled
[0.000000] CPU0 revision is: 0000dc02 (Taroko)
[0.000000] FPU revision is: 01730001
[0.000000] MIPS: machine is RTS3903N EVB
...

.oooooo..o oooo
d8P' `Y8 `888
Y88bo. .ooooo. .oooo. 888
`"Y8888o. d88' `88b `P)88b 888

`"Y88b 888ooo888 .oP"888 888
oo .d8P 888 .o d8(888 888
8""88888P' `Y8bod8P' `Y888""8o o888o

Please press Enter to activate this console. Build Time: Mar 16 2021 06:37:24

Open First

Thermal Camera

▶ Module is labeled “Infiray Tiny 1B”
▶ FW is way more optimized than the i.MX6ULL one
▶ Realtek RTS3903N SoC support is fully out of tree

▶ Seems to be mainly used for IP/WLAN cameras
▶ see also https://drmnsamoliu.github.io/hardware.html

▶ Sensor module is quite fragile
▶ I accidently broke one when doing tests with an oscilloscope

▶ I’m focusing on the i.MX6ULL side at least for now

Open First

Thermal Camera: Open Issues

▶ Figuring out the Vendor Controls
▶ I could extract a bunch of them from the UNI-T binary
▶ “InfiRay P2 Pro” seems to be similar

▶ 0x0bda:0x5830 (P2 Pro) vs 0x0bda:0x3901 (Tiny 1B)
▶ There’s a reverse engineered project for that sensor
▶ https://github.com/LeoDJ/P2Pro-Viewer/tree/main
▶ Unfortunatley protocol is different (USB request 0x44/0x45 vs 0x20/0x19)

Open First

Reverse Engineering

thermalcam# mount /dev/mmcblk1p2 /mnt
thermalcam# ls /mnt/root
CalTempConfig.ini UTi160E_config.ini gpio_keys_test power_off
DCIM_100 UTi260B_Thermal led_ctrl_test usb_charge_status
ImageCal_config.ini adc_test live555MediaServer uvc-gadget
ImageConfig.ini cam_test loop.sh v4l2tester
SystemConfig.ini gpio_adc_test play.png
thermalcam# file /mnt/root/UTi260B_Thermal
/mnt/root/UTi260B_Thermal: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
dynamically linked, interpreter /lib/ld-linux.so.3, for GNU/Linux 2.6.31, not strippe

▶ not easily possible: run binary from mainline
▶ binary can be analyzed with radare2 and/or Ghidra
▶ static strace binary from original system

Open First

Upstream Thermal Camera Handling

▶ Figuring out a good way to handle this in Linux
▶ Handle custom vendor control messages via quirk in UVC kernel driver?

▶ How to expose the controls?
▶ Handle everything in userspace?

Open First

Questions?

▶ Kernel Tree: git.kernel.org: sre/linux-misc.git (branch: uti260b)

https://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-misc.git/

Open First

Bonus: Flat Connector to Camera Module

▶ 2x20 flat connector to sensor board, pin 1 is marked, top view
GND 1 2 3V3
3V3 3 4 3V3
GND 5 6 5V0
LED_EN 7 8 GND
GC0308.SCL 9 10 GC0308.SDA
GND 11 12 -- LOW --
-- LOW -- 13 14 THERM ~RST

GND 15 16 THERM USB
THERM USB 17 18 GND
-- LOW -- 19 20 GND

GC0308.DATA 21 22 GC0308.DATA
GC0308.DATA 23 24 GC0308.DATA
GC0308.DATA 25 26 GC0308.DATA
GC0308.DATA 27 28 GC0308.DATA
GND 29 30 GC0308.HSYNC (?) (7.5 KHz)
-- HIGH -- 31 32 GND

GC0308.PCLK 33 34 GC0308.INCLK
GND 35 36 GC0308.~RST
GC0308.PWDN 37 38 GND
-- LOW -- 39 40 GND

Open First

Bonus: Enable USB Gadget Mode

#!/bin/sh
mkdir -p /sys/kernel/config/usb_gadget/g1
cd /sys/kernel/config/usb_gadget/g1

echo "0x1d6b" > idVendor # The Linux Foundation
echo "0x0104" > idProduct # Multifunction Composite Gadget

mkdir -p strings/0x409 # 0x409 = en-US
echo "0000" > strings/0x409/serialnumber
echo "UNI-T" > strings/0x409/manufacturer
echo "UTi260B" > strings/0x409/product

mkdir -p functions/ecm.usb0

MAC seen by host system
echo "00:00:00:00:00:42" > functions/ecm.usb0/host_addr

mkdir -p configs/c.1
mkdir -p configs/c.1/strings/0x409
echo "UTi260B ECM" > configs/c.1/strings/0x409/configuration

ln -s functions/ecm.usb0 configs/c.1

echo ci_hdrc.0 > /sys/kernel/config/usb_gadget/g1/UDC

