
Pierre-Clément Tosi (ptosi@google.com) Embedded Recipes - Sep 2023Android Security

Pocket-sized virtual machines
Booting small Linux payloads in Android

mailto:ptosi@google.com

Android Virtualization Framework

Microdroid: a small guest kernel

Protected Virtual Machine Firmware

Next Steps

Q&A

01

02

03

04

05

Agenda

Android Virtualization Framework
01

Android kernelAndroid kernel

Android: Privilege Escalation
Android userspace runs

● System services
● Hardware abstraction layers
● System Applications
● Third-party applications
● …

And their interface with the kernel is large and complex.

System
Service HAL Apps …

A malicious process may exploit a vulnerability in the kernel …
… to achieve privilege escalation and attack other processes …
… compromising user data and privacy!

Arm TrustZone: Isolation

Even if the Android kernel gets compromised, it is still
prevented from accessing anything running in secure!

So should we move all our privacy sensitive applications there?

Android kernel TEE

EL0

EL1

S-EL0

S-EL1

Secure MonitorEL3

Non-secure world Secure world

The Arm architecture defines isolated CPU modes, worlds: TZ was designed for security-critical firmware, so in practice:

Android kernel

TEE

EL0

EL1

S-EL0

S-EL1

Secure Monitor EL3

If an evermore complex trusted application gets compromised,
it is (probably) able to attack anything running in non-secure!

TEE

No.

Arm TrustZone: Fragmentation
An Android application is compatible with all Android devices

Unlike Android kernel patches¹, TZ updates are
often a time-consuming and costly process,
creating a tradeoff between user security and

device maintenance cost.

¹ see Android Generic Kernel image

Android kernel A Android kernel B

EL0

EL1

EL0

EL1

Device A Device B

Runs
unmodified

The TrustZone ecosystem is much more fragmented

TEE A TEE B

S-EL0

S-EL1

S-EL0

S-EL1

IncompatibleTEEs are naturally less feature-rich than modern
OSes such as Android so that tools and libraries
available are more limited than for Linux.

https://source.android.com/docs/core/architecture/kernel/generic-kernel-image

TEE

Android Virtualization Framework: Motivation

…

kernel

Privilege Escalation Privilege vs Isolation Fragmentation

Android kernel

EL0

EL1

S-EL0

S-EL1

TEE A TEE B

S-EL0

S-EL1

S-EL0

S-EL1

Less feature-rich than Linux

Harder to update than Android

Android kernel TEE

EL0

EL1

S-EL0

S-EL1

Secure Monitor

EL2 AVF Hypervisor

EL3

Guest kernel

Protected VM

AVF introduces a hypervisor isolating Android from protected VMs

Host

Android Virtualization Framework

Android kernel

EL0

EL1

EL2 AVF Hypervisor

Guest kernel

Protected VM

No attacks from compromised kernels on protected payloads

Android kernel

EL0

EL1

EL2 AVF Hypervisor

Guest kernel

pVM A

Android kernel

EL0

EL1

EL2 AVF Hypervisor

Host
Protected VM

pVM B

Standardized

● pVMs can run feature-rich environments, similar to Android
● pVM payloads may be distributed in a device-agnostic way

Flexible

The hypervisor can create multiple pVMs

Secure

● Hypervisor is purpose-built, small and straightforward

● Hypervisor can be part of the Android Generic Kernel image

● Protected KVM is open-source (AOSP) and upstreamed¹ to Linux

Deprivileged

Apps in pVMs are unable to compromise Android

Android Virtualization Framework

¹ Some has been merged, the rest is under review or on its way

https://source.android.com/docs/core/architecture/kernel/generic-kernel-image

KVM

VMM

Kernel
image

ramdisk

(non-protected) VM

KVM

VMM

Kernel
image

ramdisk

Protected VM

pKVM

AVF follows the KVM architecture:

● Guests are spawned dynamically by the host
● The virtual platform is implemented in userspace

(Virtual Machine Monitor), which preloads the guest
● Host schedules guests as regular processes

AVF Virtualization Model

● Hypervisor prevents the host from accessing guest
memory after pVM boot: the host donates it

● Denial-of-service attacks from the host are
accepted!

pKVM extends the existing KVM infrastructure:

Microdroid
02

(defconfig, prebuilts)

Microdroid

AVF can run any guest kernel: we maintain Microdroid.

● Built for pVMs (only)
● Stripped down version of Android

○ NDK APIs (Bionic syscalls)
○ APKs & APEXes
○ Binder RPC (vsock)
○ Verified Boot, SELinux, dm-verity
○ ADB, logcat, tombstone, GDB
○ No Java¹, Zygote, graphics, or HALs

¹ Intentional but we have workarounds, if necessary

Loads and executes an APK payload (binary + shared libraries)

https://android.googlesource.com/kernel/common/+/refs/heads/android14-6.1/arch/arm64/configs/microdroid_defconfig
https://android.googlesource.com/platform/packages/modules/Virtualization/+log/refs/heads/main/microdroid/kernel/arm64

Protected VM Firmware
03

“Host is not trusted” but “VMM configures pVM”?

We need a trusted entity to
● Verify that the loaded guest images were not tampered with
● Validate that the virtual platform was properly configured

Doing that in the hypervisor would increase its attack surface.

Protected VM Firmware

Guest Kernelcrosvm

Android

Protected VM

pvmfwhypervisor

loads

configures

loads

executes

verifies

executes

validates

Instead, a trusted piece of software implementing these, the pVM
firmware (“pvmfw”), is loaded from reserved memory into guest
memory and acts as the pVM entry point.

If verification fails, it aborts the boot process.

Trust model of pvmfw:
● As trusted as the hypervisor by the guest kernel
● As trusted as the guest kernel by the hypervisor
● As trusted as the guest kernel by the VMM

DICE chains attest of a boot sequence and provide each stage with a certificate and a private key (CDI), see
● Trusted Computing Group (TCG) - Hardware Requirements for a Device Identifier Composition Engine (DICE)
● Google - Open Profile for DICE
● Android - Android Profile for DICE

Each stage adds a layer to the chain through cryptographic operations:

DICE for protected VMs

Code Hash

Authority

Config Data

Salt

CDI(n-1) CDInDICE

The reserved memory loaded into the pVM by the hypervisor contains a DICE chain, which pvmfw extends with the
measurements from its verified boot, producing a new chain that the guest can make use of to:

● Perform cryptographic operations with a key that was protected from the host
● Attest of its identity to external entities
● Derive new chains for its payloads (e.g. user-space applications)

Before executing the guest kernel, pvmfw wipes the memory where its private key was stored.

https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://pigweed.googlesource.com/open-dice/+/HEAD/docs/specification.md
https://pigweed.googlesource.com/open-dice/+/HEAD/docs/android.md

The virtual environment of pvmfw makes it very similar to a baremetal bootloader as it must
● Manage its own runtime environment: set up its stack, BSS, heap, relocate .data, …
● Manage the system (system registers, page tables, exceptions, caches, …)
● Implement its own device drivers (virtio-pci, virtio-blk, UART)
● Track the pre-populated contents of RAM (e.g. guest kernel, initrd, DT)
● Run from a restricted region (4MiB) of virtual memory

… but must also follow the AVF threat model i.e. must distrust the virtual platform!

In Android 13, pvmfw was a custom target of AOSP U-Boot (2022.01) (source & prebuilt)

From Android 14, pvmfw was re-written from scratch (source)

pvmfw: Reference Implementations

https://android.googlesource.com/platform/external/u-boot/+/refs/heads/android13/build.config.pvmfw
https://android.googlesource.com/platform/packages/modules/Virtualization/+/3030f88d430a11a9c14e28cb7423aa77a57b6c50/pvmfw/pvmfw.img
https://android.googlesource.com/platform/packages/modules/Virtualization/+/refs/heads/main/pvmfw/

In Android 14, the pvmfw project is

Protected VM Firmware in Android 14

● Contributions beyond Android
○ The aarch64-paging and smccc crates were published to crates.io
○ The virtio-drivers crate was extended to support PCI and match the AVF model

● Only using C/C++ in industry-standard libraries (libfdt, BoringSSL, libopen-dice)

¹ see Memory Safe Languages in Android 13

● Part of the AOSP codebase (Apache License 2.0)
● Fully integrated with the Android Build system (no external build required)

Written in Rust¹

https://crates.io/crates/aarch64-paging
https://docs.rs/smccc/latest/smccc/
https://crates.io/crates/virtio-drivers
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

Next Steps

AVF

Provide more functionality
to support new use-cases

(device passthrough,
VM-to-TZ channels, …)

Hypervisor (pKVM)

Support new use-cases
(protected IOMMU drivers),

Improve performance
(CoW, optimised ABI)

&
Continue the upstreaming

effort

pvmfw

Implement any
security-sensitive

functionality required by
new use-cases

(anti-rollback protection,
device validation, …)

&
Further optimise boot times

as needed

You!

Read more about AVF:
source.android.com

Give it a try:
Apps/custom VMs in AVF

Get in touch:
android-kvm@google.com

https://source.android.com/docs/core/virtualization
https://android.googlesource.com/platform/packages/modules/Virtualization/+/refs/heads/main/demo_native/README.md
https://android.googlesource.com/platform/packages/modules/Virtualization/+/refs/heads/main/docs/custom_vm.md
mailto:android-kvm@google.com

