
Display support on
Embedded Systems:
a tour of Linux implementation &
limitations
Neil Armstrong - Linaro Developers Service
Qualcomm Landing Team

29 September 2023, Paris

Embedded Recipes 2023

Introduction
● Qualcomm Landing Team @ Linaro

○ Qualcomm upstream maintenance
○ Bringup/Addition of new platforms

● I also maintain other upstream pieces
○ Amlogic SoCs

■ Linux & U-Boot architecture
■ Clocks
■ Pinctrl, Serial, CEC …

○ DRM
■ Bridge drivers
■ Panel drivers
■ Amlogic Display driver

○ Defunct OXNAS platform
● 265 changes, 16369 additions(+), 9544 deletions(-) in the last year

Introducing Linaro

Linaro collaborates with
businesses and open

source communities to:

● Consolidate the Arm code
base & develop common,
low-level functionality

● Create open source
reference implementations
& standards

● Upstream products and
platforms on Arm

Why do we do this?

● To make it easier for
businesses to build and
deploy high quality and
secure Arm-based products

● To make it easier for
engineers to develop on
Arm

Two ways to collaborate
with Linaro:

● Join as a member and work
with Linaro and collaborate
with other industry leaders

● Work with Linaro Developer
Services on a one-to-one
basis on a project

1

2

For more information go to: www.linaro.org

http://www.linaro.org

Build, Test and
deploy faster

Arm Software
expertise

Specialists in
TEE on Arm

Continuous Integration
through LAVA

We support every aspect of
product delivery, from building
secure board support
packages (BSPs), product
validation and long-term
maintenance.

As part of Linaro, Developer
Services has some of the
world’s leading Arm
Software experts.

We offer continuous
integration (CI) and
automated validation through
LAVA (Linaro’s Automation &
Validation Architecture)

We specialize in security and
Trusted Execution
Environment (TEE) on Arm.

Linaro Developer Services
Linaro Developer Services helps companies build, deploy and maintain products on Arm

For more information go to: https://www.linaro.org/services/

https://www.linaro.org/services/

Linaro membership collaboration

Agenda
1. A pixel’s journey
2. Glossary
3. Display engines architectures
4. Display protocols
5. Support limitations
6. Standards paywall
7. Conclusion
8. Q&A

Not (entirely) a DRM talk!
If you want some more detailed info about the Linux Direct Rendering Manager:
● Talk “Trading Fbdev for DRM, no returns accepted” by Geert Uytterhoeven
● "The DRM/KMS subsystem from a newbie's point of view" Boris Brezillon
● "DRM Driver Development For Embedded Systems" Inki Dae
● "An introduction to the Linux DRM subsystem" Maxime Ripard

And plenty of others.

And I won’t talk about GPUs either, on embedded systems they are separate HW
blocks that write pixels on memory.

https://elinux.org/images/6/6d/Trading_Fbdev_for_DRM_no_returns_accepted_Handouts.pdf
https://events.static.linuxfound.org/sites/events/files/slides/brezillon-drm-kms.pdf
https://elinux.org/images/7/71/Elce11_dae.pdf
https://www.slideshare.net/ennael/kernel-recipes-2017-an-introduction-to-the-linux-drm-subsystem-maxime-ripard

A Pixel’s Journey
Our little Pixel’s journey starts from the memory where
It’s sleeping with his friends:

A Pixel’s Journey
Our little Pixel gets read by the Display Engine

A Pixel’s Journey
But not alone, along it’s friends on the same row:

Then it gets tweaked and merged with other pixels:

A Pixel’s Journey
Then it gets aligned with
display timings:

A Pixel’s Journey
Into TMDS/DSI/DisplayPort packets:

DVI/HDMI

DSI

DisplayPort

A Pixel’s Journey
Over a cable wires:

A Pixel’s Journey
Onto a display:

Glossary
● DRM

○ Direct Rendering Manager
● Plane

○ Layer to be color corrected, scaled & blended with background and other layers
● Source

○ Emitter of the display signal
● Sink

○ Receiver of the display signal
● Timings

○ Out-of-display transmission times used to synchronize the source and the sink
● Packet

○ Minimal group of bits transmitting a payload, usually a group of pixels
● Lanes

○ Number of physical wires (or analog group of wires) used to transmit packets
○ Packets are usually spread over the available lanes to transmit more information

Display Engines Architectures
Usually, display engine consists of:

Memory Planes
Scaling

Timings PHYBlending Protocol

● Memory reader: gets pixel from memory
● Planes blender: color correct, scaler and merge multiple layers
● Pixel timings generator: takes the viewable image and adds necessary

synchronization data before and after the display area
● Protocol Transceiver: takes the pixel data, cuts it in packets & prepares then to be

transmitted over the physical link
● PHY: Physical layer converting the digital data into analog signals

Display Engines Architectures

Memory Planes
Scaling

Timings PHYBlending Protocol

Universal
Planes

CRTC
Encoder Bridge

Graphics
Execution
Manager (GEM)

PHY
Subsystem

Equivalent DRM or Linux subsystems:

Display Engines architecture

Universal
Planes

CRTC

Encoder Bridge

Memory

PHY

Universal
Planes

CRTC

Universal
Planes

CRTC

Encoder Bridge PHY

Encoder Bridge PHY

Encoder Bridge PHY

M
u
x

Either CRTC could be sent to either digital output, and could
support dual display with scaling.
On some systems, the planes can be shared among all the
CRTCs.

Display Engines architecture

Source: https://developer.qualcomm.com/download/db410c/android-display-overview.pdf

Qualcomm Snapdragon™ 410E
Simplified Display Engine

https://developer.qualcomm.com/download/db410c/android-display-overview.pdf

Display Engines architecture

Source: https://www.nxp.com/webapp/Download?colCode=IMX8MPRM

iMX8M+

https://www.nxp.com/webapp/Download?colCode=IMX8MPRM

Source: https://lupyuen.github.io/articles/de

Allwinner A64

Display Engines architecture

https://lupyuen.github.io/articles/de

Source: https://people.freedesktop.org/~narmstrong/elcna-2017-amlogic/#/section-29

Amlogic GXL

Display Engines architecture

https://people.freedesktop.org/~narmstrong/elcna-2017-amlogic/#/section-29

Source: https://www.st.com/resource/en/reference_manual/rm0436-stm32mp157-advanced-armbased-32bit-mpus-stmicroelectronics.pdf

STM32MP1

Display Engines architecture

https://www.st.com/resource/en/reference_manual/rm0436-stm32mp157-advanced-armbased-32bit-mpus-stmicroelectronics.pdf

Display Protocols

Universal
Planes

CRTC Encoder BridgeMemory PHY

Prepares the Display Area pixels Transforms Display Area pixels
into transmission Data

Display Protocols
HDMI
● Protocol: 3 × transition minimized differential

signaling (TMDS) data and clock
● Is basically single-link DVI-D (Digital Visual Interface)
● Higher link frequencies

○ Up to 4k120 for HDMI2
● Added signaling packets into blanking

○ AVI InfoFrame
○ Audio Frames

● Supplementary Signals
○ CEC bus
○ (e)Audio Return Channel

Display Protocols
DisplayPort
● Modern Interface

○ Uses packetized data transmission
○ Embeds clock into micro-packets
○ Transmits Video & Audio
○ Variable number of lanes

● Half-duplex auxiliary channel
○ Handles non-AV communications
○ EDID, …
○ Can transmit USB

● Extensible
○ Can transmit multiple channels (for multiple monitors)
○ eDP variant for fixed panels (laptops)
○ Supports up to 20.0 Gbit/s per lane in DP 2.0
○ Can transmit up to 8K 120Hz in DP2.0 4 lanes
○ Primary protocol used in USB-C Altmode

Display Protocols
MIPI DSI
DSI Spec is well hidden by MIPI Alliance, precise informations are sparse.
=> https://www.mipi.org/specifications/dsi

Operates on top of the MIPI D-PHY (or C-PHY for DSI2) physical layer
● High-Speed differential signaling point-to-point serial bus
● MIPI D-PHY is used for Display and Cameras

Video transmission is basically packets on the D-PHY bus
● Either directly translated from video stream
● Either grouped into packets (Burst mode)
● Either command mode

○ Direct write to controller’s framebuffer memory
Supports VESA’s Display Stream Compression, variable framerate,
dual-links to large displays, ….

https://www.mipi.org/specifications/dsi

Display Protocols
LVDS
● Low-voltage differential signaling

○ It’s the serialized version of the parallel
bus signals

○ Can run at high speed
○ Uses inexpensive twisted pair copper

● Only Physical Layer in TIA/EIA-644
● FPD-Link is one of the protocols used
● Is (was ?) mainly used in Laptops

○ Now replaced with eDP

Display Protocols
Other protocols:
● Analog TV: Composite/S-Video/Component/SCART
● Analog Monitors: VGA/DVI-I/DVI-A
● MIPI DPI

Not implemented in upstream kernel:
● V-by-One using SerDes as link layer
● OpenLDI
● …

Support limitations
HDMI
● HDMI1.4 Unsupported features

(https://www.hdmi.org/download/savefile?bucket=hdmi-web-public&fileKey=Specifications/1dot4_feature_archive.pdf)
○ HDMI Ethernet Channel
○ Audio Return Channel
○ Content Type (Intel supports it)
○ Additional Color Spaces

● HDMI2 Unsupported features (https://www.hdmi.org/spec/hdmi2_1)
○ higher video resolutions (8K60 and 4K120, and resolutions up to 10K)
○ Dynamic HDR
○ Source-Based Tone Mapping (SBTM)
○ eARC (Enhanced Audio Return Channel)
○ Variable Refresh Rate (VRR)
○ Auto Low Latency Mode (ALLM)
○ Quick Frame Transport (QFT)
○ Quick Media Switching (QMS)

● Why? Specifications are closed.

https://www.hdmi.org/download/savefile?bucket=hdmi-web-public&fileKey=Specifications/1dot4_feature_archive.pdf
https://www.hdmi.org/spec/hdmi2_1

Support limitations
DisplayPort
● Much Better!
● But almost only on Intel/AMD platforms…
● AMD

○ Supports up to UHBR20 - 20.0 Gbps/Lane
● Embedded platforms

○ Only some Mediatek, Qualcomm, Tegra, Xillinx, Rockchip SoCs supports DP
○ DP2.x Only supported on Intel/AMD
○ MST (Multiple Display support) only on Intel/AMD
○ USB-C Altmode supported on Qualcomm platforms only

● DP is a complex beast, embedded platforms are slowly catching up

Support limitations
MIPI DSI
● Hard to say, Why? Specifications are closed.
● At least those are missing:

○ Proper atomic panel initialization
○ Features handshaking between Controller and Bridge/Panel
○ Panel self-refresh support
○ Dynamic mode/rate switching (with Content Type)

● Panel controllers are at best partially documented
○ We’re stuck with initialization table
○ Unable to implemented advanced features
○ Unable to support proper calibration data

● Without a DSI analyzer, we are blind
○ At some point it works, no idea why

Support limitations
● Generally, SoC support for Display Protocols are barely documented
● There’s some exceptions

○ STM32MP1 is one of those
● Most of the reference is from the Vendor Linux source

○ But vendor sometimes don’t even use DRM
● Using shared IPs is great (like the Synopsys DSI host)
● But it’s a challenge to know what’s really supported….

○ IP version is known but without the Databook it’s useless
○ We don’t know how the IP was configured
○ We don’t know the exact capabilities of the IP/PHY

Standards paywall
● HDMI

○ Needs to be an HDMI Adopter to get the HDMI 2.1b spec
○ AFAIK there’s no special way for Open-Source developers to get the spec
○ There’s leaked HDMI spec up to 2.0 but it’s illegal to use them
○ Cost: $10k/year or $5k/year + flat $1/unit

● DisplayPort
○ Free Standards from VESA:

Adaptive-Sync/Media-Sync CTS, Display Compression-M, High-performance Monitor and Display Compliance Test
Specification, Display Stream Compression Standard, Net2Display Remoting, Access Bus, CVT1.2 and Spreadsheet, DCM,
DDC/CI 1.1, DisplayID, DMS59, DMT 1.0 Rev 13, DPM Rel. A, DPVL, DSTP, E-DDC 1.2, EDID Extensions, EDID Implementation
Guides, E-EDID Rel A 1.0, 2.0, E-EDID EEPROM, FDMI, GTF 1.1, GTF Help Files, M1, MCCS 2.2a, MCCS Updates, MDDI 1.2,
MultiDisplay, Multiple Projector Common Data Interchange (MPCDI), NAVI, All Panel Standards, PnP, PSWG 15 and 17 inch,
SMT, Stereo, VBE, VIP 2, VSIS 1.0 R2, and VSIS Test Procedure…

○ But: The DisplayPort standard is available to VESA Members only.
○ Cost: The fee structure is based on annual sales
○ AFAIK there’s no special way for Open-Source developers to get the spec

Standards paywall
● MIPI DSI/D-PHY/DPI

○ Needs to be a MIPI Alliance member to get access to DSI spec
○ Fees range from $40,000 for founders and board members to $4,000 for small

companies that join at the adopter level
○ AFAIK there’s no special way for Open-Source developers to get the spec

Conclusion
● Embedded SoCs has non-heterogeneous support
● Variable support due to variable use-cases

○ Phones
○ Set-top-Box
○ Industrial Devices
○ Desktop
○ Laptops
○ …

● Impossible to entirely define what’s support to Userspace
● Impossible to properly implement:

○ All hardware features
○ All protocol features
○ All peripheral features

● Because of documentation:
○ Very limited vendor documentation
○ Paywall of IP specifications/Databooks
○ Paywall for Protocols Specs

Thank you!
Do you have any questions ?

Get the slides at: bit.ly/46wrEKy or Scan:

