Weston multi-backend

screen recording, streaming, and remote control

Philipp Zabel – p.zabel@pengutronix.de

https://www.pengutronix.de

About me

- Philipp Zabel
- Pengutronix e.K.
 - ▲ Kernel developer
 - Graphics Team
- p.zabel@pengutronix.de
- pH5 on OFTC, LiberaChat,
- and gitlab.freedesktop.org

Weston multi-backend support

- HMI GUI recording and remote control
- Embedded hardware vs desktop
- Wayland / Weston
 + PipeWire for recording,
 + VNC for remote control
- Demo, Weston MRs
- Improvements and alternatives

HMI GUI recording and remote control

- Different hardware
 - agricultural, industrial, laboratory, or medical equipment
- Common properties: human machine interface
 - Touch screen, GUI e.g. Qt or Web (Chromium, WPE)
 - Camera(s)
- Similar requirements

- Camera + GUI recording for documentation, security, training
- Remote control for user convenience or technical support

Embedded hardware vs desktop

- Hardware selected for use case
 - Usually not much headroom
- Unified memory architecture
 - CPU, GPU, VPU all use system RAM
- Memory bandwidth limited
 - Raw video expensive, e.g. RGBx: 1080p60 ~0.5 GiB/s, 2160p60 ~2 GiB/s
 - Avoid frame buffer copies
 - Avoid rendering where possible
 - Use hardware features (hardware planes, GPU tiling, FBC)

Introducing Wayland / Weston

- Wayland is a compositor IPC protocol and library
 - Replacement for X11, libX11/libxcb
 - Reduce roundtrips
 - Shared memory
 - "Every frame is perfect" synchronized updates, security
 - Extensible via wayland-protocols
- Weston is a Wayland compositor
 - Reference implementation
 - Supports compositor bypass, hardware overlay planes

https://gitlab.freedesktop.org/wayland

Wayland overview (1/2)

- Protocols (e.g. xdg-shell, linux-dmabuf-unstable-v1)
 - Interfaces
 - Requests and events
 - Global objects
- Wayland core protocol
 - Display, registry, surfaces, buffers, shared memory, input
- xdg-shell protocol
 - Window roles, movement and size

https://wayland.freedesktop.org/docs/html/

Wayland overview (2/2)

- libwayland
 - Handles marshalling, local proxy objects
 - Listeners
 - Client registers function pointers for events on interfaces
- Surface
 - Attach buffer, commit
- Buffer
 - Shared memory pool, DMA-BUF

To show something on the screen, a wayland client ...

- Connects to the Wayland compositor socket
- Binds to (global) objects it wants to use
 - Creates local proxy object used to issue requests
 - Installs listeners (callback functions for events)
- Creates a surface
- Creates a buffer, shared with the compositor (memfd or DMA-BUF)
- Fills the buffer with content and attaches it to the surface
- Commits changes to the surface

Why Weston?

- Why Wayland compositor instead of single application?
 - Single point to implement shared functionality
 - Reusable for different use cases
 - Align with desktop development
- Why Weston instead of other Wayland compositors?
 - Hardware overlay planes

Weston architecture (1/3)

- Compositor / libweston
- Shell plugin
 - e.g. desktop, kiosk, IVI
 - The window manager part
- Renderer plugin, GL or pixman
- Backend plugin

Weston architecture (2/3)

- Shell plugin
 - Decides surface positions on workspace
 - Creates views for surfaces on outputs they are visible on
 - e.g. two halves for a surface straddling two outputs
 - Or: two complete views of the same surface on separate outputs
 - IVI shell allows to write a small controller plugin to control where each surface goes

Weston architecture (3/3)

Backend plugin

- e.g. DRM (standalone), Wayland (nested)
- Implements heads and outputs
- Heads represent monitors (or Wayland windows)
- Outputs
 - Control rendering
 - Control scanout
 - Have position in workspace

Weston status quo

- Single renderer plugin
- Single backend plugin
- Example:
 - PipeWire plugin using virtual outputs of DRM backend

Weston + PipeWire for recording*

- Status quo: PipeWire virtual output plugin for DRM backend
 - No DMA-BUF support
 - Maps PipeWire buffers and copies
- New: PipeWire backend (WIP)
 - Can import PipeWire DMA-BUFs into GL renderer FBOs
 - Per-output pixel format
 - Configurable via weston.ini

Weston VNC for remote control

- Status quo: VNC backend (WIP)
 - Initial Weston VNC backend by Stefan Agner¹
 - Uses Neat VNC by Andri Yngvason²
 - Software rendering only
 - No coexistence with DRM backend
- New: VNC backend changes (WIP)
 - Multi-backend support
 - GL render to FBO support with glReadPixels (not optimal)

¹ https://gitlab.freedesktop.org/wayland/weston/-/merge_requests/362
 ² https://github.com/any1/neatvnc

New Weston backend architecture

- Single renderer plugin
- Multiple backend plugins
- PipeWire backend
 - DMA-BUF support
 - Render into them directly
 - PipeWire stream per output
- VNC backend
 - Support GL renderer

Weston multi-backend support

- Replace single backend on compositor with backend list
- Make heads point to their backend
 - So outputs are created and configured by the correct backend
- Move GL renderer interface from backends to compositor, to be shared by multiple backends
 - Renderer is still instantiated by the first backend
- Add command line options to load multiple backends
- Fix backends to support being loaded simultaneously

Demonstration

Weston merge requests

- Heterogeneous output support (!577)¹
- Multi-backend support (!578)²
- GL renderer FBO support (!879)³
- PipeWire backend (TBD)
- VNC backend (!880, !881)

¹ https://gitlab.freedesktop.org/wayland/weston/-/merge_requests/577
 ² https://gitlab.freedesktop.org/wayland/weston/-/merge_requests/578
 ³ https://gitlab.freedesktop.org/wayland/weston/-/merge_requests/879
 https://gitlab.freedesktop.org/pH5/weston/-/tree/embedded-recipes-2022

Outlook - Improvements

- Weston currently does not support overlapping outputs¹
 - Damage tracking on the virtual desktop spanning all outputs
- Dynamic outputs
- Configurable frame rate
- VNC performance
 - Neat VNC GBM BO import
 - Latency reductions (preemptive render and encode)
 - Hardware accelerated encoding
- "Compositor bypass" for PipeWire and VNC backends

¹ https://gitlab.freedesktop.org/wayland/weston/-/issues/494

Outlook - Alternatives

- wlroots
 - Currently does not support hardware overlay planes

- Work is ongoing to use libliftoff for this
- Detailed in issue #3371 ("Add a paint list struct")¹
- wayvnc
 - Works with wlroots, could possibly work with Weston headless via
 - ext-screencopy-v1 protocol²

¹ https://gitlab.freedesktop.org/wlroots/wlroots/-/issues/3371
 ² https://gitlab.freedesktop.org/wayland/wayland-protocols/-/merge_requests/124

Thanks!

Questions?

https://www.pengutronix.de